flux_refineck/
checker.rs

1use std::{collections::hash_map::Entry, iter, vec};
2
3use flux_common::{
4    bug, dbg, dbg::SpanTrace, index::IndexVec, iter::IterExt, span_bug, tracked_span_bug,
5    tracked_span_dbg_assert_eq,
6};
7use flux_config::{self as config, InferOpts};
8use flux_infer::{
9    infer::{
10        ConstrReason, GlobalEnvExt as _, InferCtxt, InferCtxtRoot, InferResult, SubtypeReason,
11    },
12    projections::NormalizeExt as _,
13    refine_tree::{Marker, RefineCtxtTrace},
14};
15use flux_middle::{
16    global_env::GlobalEnv,
17    pretty::PrettyCx,
18    queries::{QueryResult, try_query},
19    query_bug,
20    rty::{
21        self, AdtDef, BaseTy, Binder, Bool, Clause, Constant, CoroutineObligPredicate, EarlyBinder,
22        Expr, FnOutput, FnSig, FnTraitPredicate, GenericArg, GenericArgsExt as _, Int, IntTy,
23        Mutability, Path, PolyFnSig, PtrKind, RefineArgs, RefineArgsExt,
24        Region::ReErased,
25        Ty, TyKind, Uint, UintTy, VariantIdx,
26        fold::{TypeFoldable, TypeFolder, TypeSuperFoldable},
27        refining::{Refine, Refiner},
28    },
29};
30use flux_rustc_bridge::{
31    self, ToRustc,
32    mir::{
33        self, AggregateKind, AssertKind, BasicBlock, Body, BodyRoot, BorrowKind, CastKind,
34        ConstOperand, Location, NonDivergingIntrinsic, Operand, Place, Rvalue, START_BLOCK,
35        Statement, StatementKind, Terminator, TerminatorKind, UnOp,
36    },
37    ty::{self, GenericArgsExt as _},
38};
39use itertools::{Itertools, izip};
40use rustc_data_structures::{graph::dominators::Dominators, unord::UnordMap};
41use rustc_hash::{FxHashMap, FxHashSet};
42use rustc_hir::{
43    LangItem,
44    def_id::{DefId, LocalDefId},
45};
46use rustc_index::{IndexSlice, bit_set::DenseBitSet};
47use rustc_infer::infer::TyCtxtInferExt;
48use rustc_middle::{
49    mir::{Promoted, SwitchTargets},
50    ty::{TyCtxt, TypeSuperVisitable as _, TypeVisitable as _, TypingMode},
51};
52use rustc_span::{
53    Span, Symbol,
54    sym::{self},
55};
56
57use self::errors::{CheckerError, ResultExt};
58use crate::{
59    ghost_statements::{CheckerId, GhostStatement, GhostStatements, Point},
60    primops,
61    queue::WorkQueue,
62    rty::Char,
63    type_env::{BasicBlockEnv, BasicBlockEnvShape, PtrToRefBound, TypeEnv, TypeEnvTrace},
64};
65
66type Result<T = ()> = std::result::Result<T, CheckerError>;
67
68pub(crate) struct Checker<'ck, 'genv, 'tcx, M> {
69    genv: GlobalEnv<'genv, 'tcx>,
70    /// [`CheckerId`] of the function-like item being checked.
71    checker_id: CheckerId,
72    inherited: Inherited<'ck, M>,
73    body: &'ck Body<'tcx>,
74    /// The type used for the `resume` argument if we are checking a generator.
75    resume_ty: Option<Ty>,
76    fn_sig: FnSig,
77    /// A marker to the node in the refinement tree at the end of the basic block after applying
78    /// the effects of the terminator.
79    markers: IndexVec<BasicBlock, Option<Marker>>,
80    visited: DenseBitSet<BasicBlock>,
81    queue: WorkQueue<'ck>,
82    default_refiner: Refiner<'genv, 'tcx>,
83    /// The templates for the promoted bodies of the current function
84    promoted: &'ck IndexSlice<Promoted, Ty>,
85}
86
87/// Fields shared by the top-level function and its nested closure/generators
88struct Inherited<'ck, M> {
89    /// [`Expr`]s used to instantiate the early bound refinement parameters of the top-level function
90    /// signature
91    ghost_stmts: &'ck UnordMap<CheckerId, GhostStatements>,
92    mode: &'ck mut M,
93
94    /// This map has the "templates" generated for the closures constructed (in [`Checker::check_rvalue_closure`]).
95    /// The [`PolyFnSig`] can have free variables (inside the scope of kvars), so we need to be
96    /// careful and only use it in the correct scope.
97    closures: &'ck mut UnordMap<DefId, PolyFnSig>,
98}
99
100#[derive(Debug)]
101struct ResolvedCall {
102    output: Ty,
103    /// The refine arguments given to the call
104    _early_args: Vec<Expr>,
105    /// The refine arguments given to the call
106    _late_args: Vec<Expr>,
107}
108
109impl<'ck, M: Mode> Inherited<'ck, M> {
110    fn new(
111        mode: &'ck mut M,
112        ghost_stmts: &'ck UnordMap<CheckerId, GhostStatements>,
113        closures: &'ck mut UnordMap<DefId, PolyFnSig>,
114    ) -> Self {
115        Self { ghost_stmts, mode, closures }
116    }
117
118    fn reborrow(&mut self) -> Inherited<'_, M> {
119        Inherited { ghost_stmts: self.ghost_stmts, mode: self.mode, closures: self.closures }
120    }
121}
122
123pub(crate) trait Mode: Sized {
124    #[expect(dead_code)]
125    const NAME: &str;
126
127    fn enter_basic_block<'ck, 'genv, 'tcx>(
128        ck: &mut Checker<'ck, 'genv, 'tcx, Self>,
129        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
130        bb: BasicBlock,
131    ) -> TypeEnv<'ck>;
132
133    fn check_goto_join_point<'genv, 'tcx>(
134        ck: &mut Checker<'_, 'genv, 'tcx, Self>,
135        infcx: InferCtxt<'_, 'genv, 'tcx>,
136        env: TypeEnv,
137        terminator_span: Span,
138        target: BasicBlock,
139    ) -> Result<bool>;
140
141    fn clear(ck: &mut Checker<Self>, bb: BasicBlock);
142}
143
144pub(crate) struct ShapeMode {
145    bb_envs: FxHashMap<CheckerId, FxHashMap<BasicBlock, BasicBlockEnvShape>>,
146}
147
148pub(crate) struct RefineMode {
149    bb_envs: FxHashMap<CheckerId, FxHashMap<BasicBlock, BasicBlockEnv>>,
150}
151
152/// The result of running the shape phase.
153pub(crate) struct ShapeResult(FxHashMap<CheckerId, FxHashMap<BasicBlock, BasicBlockEnvShape>>);
154
155/// A `Guard` describes extra "control" information that holds at the start of a successor basic block
156#[derive(Debug)]
157enum Guard {
158    /// No extra information holds, e.g., for a plain goto.
159    None,
160    /// A predicate that can be assumed, e.g., in the branches of an if-then-else.
161    Pred(Expr),
162    /// The corresponding place was found to be of a particular variant.
163    Match(Place, VariantIdx),
164}
165
166impl<'genv, 'tcx> Checker<'_, 'genv, 'tcx, ShapeMode> {
167    pub(crate) fn run_in_shape_mode<'ck>(
168        genv: GlobalEnv<'genv, 'tcx>,
169        local_id: LocalDefId,
170        ghost_stmts: &'ck UnordMap<CheckerId, GhostStatements>,
171        closures: &'ck mut UnordMap<DefId, PolyFnSig>,
172        opts: InferOpts,
173        poly_sig: &PolyFnSig,
174    ) -> Result<ShapeResult> {
175        let def_id = local_id.to_def_id();
176        dbg::shape_mode_span!(genv.tcx(), local_id).in_scope(|| {
177            let span = genv.tcx().def_span(local_id);
178            let mut mode = ShapeMode { bb_envs: FxHashMap::default() };
179
180            let body = genv.mir(local_id).with_span(span)?;
181
182            // In shape mode we don't care about kvars
183            let mut root_ctxt = try_query(|| {
184                genv.infcx_root(&body.infcx, opts)
185                    .with_dummy_kvars()
186                    .identity_for_item(def_id)?
187                    .build()
188            })
189            .with_span(span)?;
190
191            let inherited = Inherited::new(&mut mode, ghost_stmts, closures);
192
193            let infcx = root_ctxt.infcx(def_id, &body.infcx);
194            Checker::run(infcx, local_id, inherited, poly_sig.clone())?;
195
196            Ok(ShapeResult(mode.bb_envs))
197        })
198    }
199}
200
201impl<'genv, 'tcx> Checker<'_, 'genv, 'tcx, RefineMode> {
202    pub(crate) fn run_in_refine_mode<'ck>(
203        genv: GlobalEnv<'genv, 'tcx>,
204        local_id: LocalDefId,
205        ghost_stmts: &'ck UnordMap<CheckerId, GhostStatements>,
206        closures: &'ck mut UnordMap<DefId, PolyFnSig>,
207        bb_env_shapes: ShapeResult,
208        opts: InferOpts,
209        poly_sig: &PolyFnSig,
210    ) -> Result<InferCtxtRoot<'genv, 'tcx>> {
211        let def_id = local_id.to_def_id();
212        let span = genv.tcx().def_span(def_id);
213
214        let body = genv.mir(local_id).with_span(span)?;
215        let mut root_ctxt = try_query(|| {
216            genv.infcx_root(&body.infcx, opts)
217                .identity_for_item(def_id)?
218                .build()
219        })
220        .with_span(span)?;
221        let bb_envs = bb_env_shapes.into_bb_envs(&mut root_ctxt, &body.body);
222
223        dbg::refine_mode_span!(genv.tcx(), def_id, bb_envs).in_scope(|| {
224            // Check the body of the function def_id against its signature
225            let mut mode = RefineMode { bb_envs };
226            let inherited = Inherited::new(&mut mode, ghost_stmts, closures);
227            let infcx = root_ctxt.infcx(def_id, &body.infcx);
228            Checker::run(infcx, local_id, inherited, poly_sig.clone())?;
229
230            Ok(root_ctxt)
231        })
232    }
233}
234
235/// `SubFn` lets us reuse _most_ of the same code for `check_fn_subtyping` for both the case where
236/// we have an early-bound function signature (e.g., for a trait method???) and versions without,
237/// e.g. a plain closure against its FnTraitPredicate obligation.
238#[derive(Debug)]
239pub enum SubFn {
240    Poly(DefId, EarlyBinder<rty::PolyFnSig>, rty::GenericArgs),
241    Mono(rty::PolyFnSig),
242}
243
244impl SubFn {
245    pub fn as_ref(&self) -> &rty::PolyFnSig {
246        match self {
247            SubFn::Poly(_, sig, _) => sig.skip_binder_ref(),
248            SubFn::Mono(sig) => sig,
249        }
250    }
251}
252
253/// The function `check_fn_subtyping` does a function subtyping check between
254/// the sub-type (T_f) corresponding to the type of `def_id` @ `args` and the
255/// super-type (T_g) corresponding to the `oblig_sig`. This subtyping is handled
256/// as akin to the code
257///
258///   T_f := (S1,...,Sn) -> S
259///   T_g := (T1,...,Tn) -> T
260///   T_f <: T_g
261///
262///  fn g(x1:T1,...,xn:Tn) -> T {
263///      f(x1,...,xn)
264///  }
265fn check_fn_subtyping(
266    infcx: &mut InferCtxt,
267    sub_sig: SubFn,
268    super_sig: &rty::PolyFnSig,
269    span: Span,
270) -> InferResult {
271    let mut infcx = infcx.branch();
272    let mut infcx = infcx.at(span);
273    let tcx = infcx.genv.tcx();
274
275    let super_sig = super_sig
276        .replace_bound_vars(
277            |_| rty::ReErased,
278            |sort, _, kind| Expr::fvar(infcx.define_bound_reft_var(sort, kind)),
279        )
280        .deeply_normalize(&mut infcx)?;
281
282    // 1. Unpack `T_g` input types
283    let actuals = super_sig
284        .inputs()
285        .iter()
286        .map(|ty| infcx.unpack(ty))
287        .collect_vec();
288
289    let mut env = TypeEnv::empty();
290    let actuals = unfold_local_ptrs(&mut infcx, &mut env, sub_sig.as_ref(), &actuals)?;
291    let actuals = infer_under_mut_ref_hack(&mut infcx, &actuals[..], sub_sig.as_ref());
292
293    let output = infcx.ensure_resolved_evars(|infcx| {
294        // 2. Fresh names for `T_f` refine-params / Instantiate fn_def_sig and normalize it
295        // in subtyping_mono, skip next two steps...
296        let sub_sig = match sub_sig {
297            SubFn::Poly(def_id, early_sig, sub_args) => {
298                let refine_args = infcx.instantiate_refine_args(def_id, &sub_args)?;
299                early_sig.instantiate(tcx, &sub_args, &refine_args)
300            }
301            SubFn::Mono(sig) => sig,
302        };
303        // ... jump right here.
304        let sub_sig = sub_sig
305            .replace_bound_vars(
306                |_| rty::ReErased,
307                |sort, mode, _| infcx.fresh_infer_var(sort, mode),
308            )
309            .deeply_normalize(infcx)?;
310
311        // 3. INPUT subtyping (g-input <: f-input)
312        for requires in super_sig.requires() {
313            infcx.assume_pred(requires);
314        }
315        infcx.check_pred(
316            Expr::implies(super_sig.no_panic(), sub_sig.no_panic()),
317            ConstrReason::Subtype(SubtypeReason::Input),
318        );
319        for (actual, formal) in iter::zip(actuals, sub_sig.inputs()) {
320            let reason = ConstrReason::Subtype(SubtypeReason::Input);
321            infcx.subtyping_with_env(&mut env, &actual, formal, reason)?;
322        }
323        // we check the requires AFTER the actual-formal subtyping as the above may unfold stuff in
324        // the actuals
325        for requires in sub_sig.requires() {
326            let reason = ConstrReason::Subtype(SubtypeReason::Requires);
327            infcx.check_pred(requires, reason);
328        }
329
330        Ok(sub_sig.output())
331    })?;
332
333    let output = infcx
334        .fully_resolve_evars(&output)
335        .replace_bound_refts_with(|sort, _, kind| {
336            Expr::fvar(infcx.define_bound_reft_var(sort, kind))
337        });
338
339    // 4. OUTPUT subtyping (f_out <: g_out)
340    infcx.ensure_resolved_evars(|infcx| {
341        let super_output = super_sig
342            .output()
343            .replace_bound_refts_with(|sort, mode, _| infcx.fresh_infer_var(sort, mode));
344        let reason = ConstrReason::Subtype(SubtypeReason::Output);
345        infcx.subtyping(&output.ret, &super_output.ret, reason)?;
346
347        // 6. Update state with Output "ensures" and check super ensures
348        env.assume_ensures(infcx, &output.ensures, span);
349        fold_local_ptrs(infcx, &mut env, span)?;
350        env.check_ensures(
351            infcx,
352            &super_output.ensures,
353            ConstrReason::Subtype(SubtypeReason::Ensures),
354        )
355    })
356}
357
358/// Trait subtyping check, which makes sure that the type for an impl method (def_id)
359/// is a subtype of the corresponding trait method.
360pub(crate) fn trait_impl_subtyping<'genv, 'tcx>(
361    genv: GlobalEnv<'genv, 'tcx>,
362    def_id: LocalDefId,
363    opts: InferOpts,
364    span: Span,
365) -> InferResult<Option<InferCtxtRoot<'genv, 'tcx>>> {
366    let tcx = genv.tcx();
367
368    // Skip the check if this is not an impl method
369    let Some((impl_trait_ref, trait_method_id)) = find_trait_item(genv, def_id)? else {
370        return Ok(None);
371    };
372    let impl_method_id = def_id.to_def_id();
373    // Skip the check if either the trait-method or the impl-method are marked as `trusted_impl`
374    if genv.has_trusted_impl(trait_method_id) || genv.has_trusted_impl(impl_method_id) {
375        return Ok(None);
376    }
377
378    let impl_id = tcx.impl_of_assoc(impl_method_id).unwrap();
379    let impl_method_args = GenericArg::identity_for_item(genv, impl_method_id)?;
380    let trait_method_args = impl_method_args.rebase_onto(&tcx, impl_id, &impl_trait_ref.args);
381    let trait_refine_args = RefineArgs::identity_for_item(genv, trait_method_id)?;
382
383    let rustc_infcx = genv
384        .tcx()
385        .infer_ctxt()
386        .with_next_trait_solver(true)
387        .build(TypingMode::non_body_analysis());
388
389    let mut root_ctxt = genv
390        .infcx_root(&rustc_infcx, opts)
391        .with_const_generics(impl_id)?
392        .with_refinement_generics(trait_method_id, &trait_method_args)?
393        .build()?;
394
395    let mut infcx = root_ctxt.infcx(impl_method_id, &rustc_infcx);
396
397    let trait_fn_sig =
398        genv.fn_sig(trait_method_id)?
399            .instantiate(tcx, &trait_method_args, &trait_refine_args);
400    let impl_sig = genv.fn_sig(impl_method_id)?;
401    let sub_sig = SubFn::Poly(impl_method_id, impl_sig, impl_method_args);
402
403    check_fn_subtyping(&mut infcx, sub_sig, &trait_fn_sig, span)?;
404    Ok(Some(root_ctxt))
405}
406
407fn find_trait_item(
408    genv: GlobalEnv<'_, '_>,
409    def_id: LocalDefId,
410) -> QueryResult<Option<(rty::TraitRef, DefId)>> {
411    let tcx = genv.tcx();
412    let def_id = def_id.to_def_id();
413    if let Some(impl_id) = tcx.trait_impl_of_assoc(def_id) {
414        let impl_trait_ref = genv.impl_trait_ref(impl_id)?.instantiate_identity();
415        let trait_item_id = tcx.associated_item(def_id).trait_item_def_id().unwrap();
416        return Ok(Some((impl_trait_ref, trait_item_id)));
417    }
418    Ok(None)
419}
420
421/// Temporarily (around a function call) convert an `&mut` to an `&strg` to allow for the call to be
422/// checked. This is done by unfolding the `&mut` into a local pointer at the call-site and then
423/// folding the pointer back into the `&mut` upon return.
424/// See also [`fold_local_ptrs`].
425///
426/// ```text
427///             unpack(T) = T'
428/// ---------------------------------------[local-unfold]
429/// Γ ; &mut T => Γ, l:[<: T] T' ; ptr(l)
430/// ```
431fn unfold_local_ptrs(
432    infcx: &mut InferCtxt,
433    env: &mut TypeEnv,
434    fn_sig: &PolyFnSig,
435    actuals: &[Ty],
436) -> InferResult<Vec<Ty>> {
437    // We *only* need to know whether each input is a &strg or not
438    let fn_sig = fn_sig.skip_binder_ref();
439    let mut tys = vec![];
440    for (actual, input) in izip!(actuals, fn_sig.inputs()) {
441        let actual = if let (
442            TyKind::Indexed(BaseTy::Ref(re, bound, Mutability::Mut), _),
443            TyKind::StrgRef(_, _, _),
444        ) = (actual.kind(), input.kind())
445        {
446            let loc = env.unfold_local_ptr(infcx, bound)?;
447            let path1 = Path::new(loc, rty::List::empty());
448            Ty::ptr(PtrKind::Mut(*re), path1)
449        } else {
450            actual.clone()
451        };
452        tys.push(actual);
453    }
454    Ok(tys)
455}
456
457/// Fold local pointers implements roughly a rule like the following (for all local pointers)
458/// that converts the local pointers created via [`unfold_local_ptrs`] back into `&mut`.
459///
460/// ```text
461///       T1 <: T2
462/// --------------------- [local-fold]
463/// Γ, l:[<: T2] T1 => Γ
464/// ```
465fn fold_local_ptrs(infcx: &mut InferCtxt, env: &mut TypeEnv, span: Span) -> InferResult {
466    let mut at = infcx.at(span);
467    env.fold_local_ptrs(&mut at)
468}
469
470fn promoted_fn_sig(ty: &Ty) -> PolyFnSig {
471    let safety = rustc_hir::Safety::Safe;
472    let abi = rustc_abi::ExternAbi::Rust;
473    let requires = rty::List::empty();
474    let inputs = rty::List::empty();
475    let output =
476        Binder::bind_with_vars(FnOutput::new(ty.clone(), rty::List::empty()), rty::List::empty());
477    let fn_sig = crate::rty::FnSig::new(safety, abi, requires, inputs, output, Expr::tt(), false);
478    PolyFnSig::bind_with_vars(fn_sig, crate::rty::List::empty())
479}
480
481impl<'ck, 'genv, 'tcx, M: Mode> Checker<'ck, 'genv, 'tcx, M> {
482    fn new(
483        genv: GlobalEnv<'genv, 'tcx>,
484        checker_id: CheckerId,
485        inherited: Inherited<'ck, M>,
486        body: &'ck Body<'tcx>,
487        fn_sig: FnSig,
488        promoted: &'ck IndexSlice<Promoted, Ty>,
489    ) -> QueryResult<Self> {
490        let root_id = checker_id.root_id();
491
492        let resume_ty = if let CheckerId::DefId(def_id) = checker_id
493            && genv.tcx().is_coroutine(def_id.to_def_id())
494        {
495            Some(fn_sig.inputs()[1].clone())
496        } else {
497            None
498        };
499
500        let bb_len = body.basic_blocks.len();
501        Ok(Self {
502            checker_id,
503            genv,
504            inherited,
505            body,
506            resume_ty,
507            visited: DenseBitSet::new_empty(bb_len),
508            fn_sig,
509            markers: IndexVec::from_fn_n(|_| None, bb_len),
510            queue: WorkQueue::empty(bb_len, &body.dominator_order_rank),
511            default_refiner: Refiner::default_for_item(genv, root_id.to_def_id())?,
512            promoted,
513        })
514    }
515
516    fn check_body(
517        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
518        checker_id: CheckerId,
519        inherited: Inherited<'ck, M>,
520        body: &'ck Body<'tcx>,
521        poly_sig: PolyFnSig,
522        promoted: &'ck IndexSlice<Promoted, Ty>,
523    ) -> Result {
524        let span = body.span();
525
526        let fn_sig = poly_sig
527            .replace_bound_vars(
528                |_| rty::ReErased,
529                |sort, _, kind| {
530                    let name = infcx.define_bound_reft_var(sort, kind);
531                    Expr::fvar(name)
532                },
533            )
534            .deeply_normalize(&mut infcx.at(span))
535            .with_span(span)?;
536        let mut env = TypeEnv::new(infcx, body, &fn_sig);
537
538        let mut ck = Checker::new(infcx.genv, checker_id, inherited, body, fn_sig, promoted)
539            .with_span(span)?;
540        ck.check_ghost_statements_at(infcx, &mut env, Point::FunEntry, span)?;
541
542        ck.check_goto(infcx.branch(), env, body.span(), START_BLOCK)?;
543
544        while let Some(bb) = ck.queue.pop() {
545            let visited = ck.visited.contains(bb);
546
547            if visited {
548                M::clear(&mut ck, bb);
549            }
550
551            let marker = ck.marker_at_dominator(bb);
552            let mut infcx = infcx.move_to(marker, visited);
553            let mut env = M::enter_basic_block(&mut ck, &mut infcx, bb);
554            env.unpack(&mut infcx);
555            ck.check_basic_block(infcx, env, bb)?;
556        }
557        Ok(())
558    }
559
560    /// Assign a template with fresh kvars to each promoted constant in `body_root`.
561    fn promoted_tys(
562        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
563        def_id: LocalDefId,
564        body_root: &BodyRoot<'tcx>,
565    ) -> QueryResult<IndexVec<Promoted, Ty>> {
566        let hole_refiner = Refiner::with_holes(infcx.genv, def_id.into())?;
567
568        body_root
569            .promoted
570            .iter()
571            .map(|body| {
572                Ok(body
573                    .return_ty()
574                    .refine(&hole_refiner)?
575                    .replace_holes(|binders, kind| infcx.fresh_infer_var_for_hole(binders, kind)))
576            })
577            .collect()
578    }
579
580    fn run(
581        mut infcx: InferCtxt<'_, 'genv, 'tcx>,
582        def_id: LocalDefId,
583        mut inherited: Inherited<'_, M>,
584        poly_sig: PolyFnSig,
585    ) -> Result {
586        let genv = infcx.genv;
587        let span = genv.tcx().def_span(def_id);
588        let body_root = genv.mir(def_id).with_span(span)?;
589
590        // 1. Generate templates for promoted consts
591        let promoted_tys = Self::promoted_tys(&mut infcx, def_id, &body_root).with_span(span)?;
592
593        // 2. Check the body of all promoted
594        for (promoted, ty) in promoted_tys.iter_enumerated() {
595            let body = &body_root.promoted[promoted];
596            let poly_sig = promoted_fn_sig(ty);
597            Checker::check_body(
598                &mut infcx,
599                CheckerId::Promoted(def_id, promoted),
600                inherited.reborrow(),
601                body,
602                poly_sig,
603                &promoted_tys,
604            )?;
605        }
606
607        // 3. Check the main body
608        Checker::check_body(
609            &mut infcx,
610            CheckerId::DefId(def_id),
611            inherited,
612            &body_root.body,
613            poly_sig,
614            &promoted_tys,
615        )
616    }
617
618    fn check_basic_block(
619        &mut self,
620        mut infcx: InferCtxt<'_, 'genv, 'tcx>,
621        mut env: TypeEnv,
622        bb: BasicBlock,
623    ) -> Result {
624        dbg::basic_block_start!(bb, infcx, env);
625
626        self.visited.insert(bb);
627        let data = &self.body.basic_blocks[bb];
628        let mut last_stmt_span = None;
629        let mut location = Location { block: bb, statement_index: 0 };
630        for stmt in &data.statements {
631            let span = stmt.source_info.span;
632            self.check_ghost_statements_at(
633                &mut infcx,
634                &mut env,
635                Point::BeforeLocation(location),
636                span,
637            )?;
638            bug::track_span(span, || {
639                dbg::statement!("start", stmt, &infcx, &env, span, &self);
640                self.check_statement(&mut infcx, &mut env, stmt)?;
641                dbg::statement!("end", stmt, &infcx, &env, span, &self);
642                Ok(())
643            })?;
644            if !stmt.is_nop() {
645                last_stmt_span = Some(span);
646            }
647            location = location.successor_within_block();
648        }
649
650        if let Some(terminator) = &data.terminator {
651            let span = terminator.source_info.span;
652            self.check_ghost_statements_at(
653                &mut infcx,
654                &mut env,
655                Point::BeforeLocation(location),
656                span,
657            )?;
658
659            bug::track_span(span, || {
660                dbg::terminator!("start", terminator, infcx, env);
661
662                let successors =
663                    self.check_terminator(&mut infcx, &mut env, terminator, last_stmt_span)?;
664                dbg::terminator!("end", terminator, infcx, env);
665
666                self.markers[bb] = Some(infcx.marker());
667                let term_span = last_stmt_span.unwrap_or(span);
668                self.check_successors(infcx, env, bb, term_span, successors)
669            })?;
670        }
671        Ok(())
672    }
673
674    fn check_assign_ty(
675        &mut self,
676        infcx: &mut InferCtxt,
677        env: &mut TypeEnv,
678        place: &Place,
679        ty: Ty,
680        span: Span,
681    ) -> InferResult {
682        let ty = infcx.hoister(true).hoist(&ty);
683        env.assign(&mut infcx.at(span), place, ty)
684    }
685
686    fn check_statement(
687        &mut self,
688        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
689        env: &mut TypeEnv,
690        stmt: &Statement<'tcx>,
691    ) -> Result {
692        let stmt_span = stmt.source_info.span;
693        match &stmt.kind {
694            StatementKind::Assign(place, rvalue) => {
695                let ty = self.check_rvalue(infcx, env, stmt_span, rvalue)?;
696                self.check_assign_ty(infcx, env, place, ty, stmt_span)
697                    .with_span(stmt_span)?;
698            }
699            StatementKind::SetDiscriminant { .. } => {
700                // TODO(nilehmann) double check here that the place is unfolded to
701                // the correct variant. This should be guaranteed by rustc
702            }
703            StatementKind::FakeRead(_) => {
704                // TODO(nilehmann) fake reads should be folding points
705            }
706            StatementKind::AscribeUserType(_, _) => {
707                // User ascriptions affect nll, but no refinement type checking.
708                // Maybe we can use this to associate refinement type to locals.
709            }
710            StatementKind::PlaceMention(_) => {
711                // Place mentions are a no-op used to detect uses of unsafe that would
712                // otherwise be optimized away.
713            }
714            StatementKind::Nop => {}
715            StatementKind::Intrinsic(NonDivergingIntrinsic::Assume(op)) => {
716                // Currently, we only have the `assume` intrinsic, which if we're to trust rustc should be a NOP.
717                // TODO: There may be a use-case to actually "assume" the bool index associated with the operand,
718                // i.e. to strengthen the `rcx` / `env` with the assumption that the bool-index is in fact `true`...
719                let _ = self
720                    .check_operand(infcx, env, stmt_span, op)
721                    .with_span(stmt_span)?;
722            }
723        }
724        Ok(())
725    }
726
727    fn is_exit_block(&self, bb: BasicBlock) -> bool {
728        let data = &self.body.basic_blocks[bb];
729        let is_no_op = data.statements.iter().all(Statement::is_nop);
730        let is_ret = match &data.terminator {
731            None => false,
732            Some(term) => term.is_return(),
733        };
734        is_no_op && is_ret
735    }
736
737    /// For `check_terminator`, the output `Vec<BasicBlock, Guard>` denotes,
738    /// - `BasicBlock` "successors" of the current terminator, and
739    /// - `Guard` are extra control information from, e.g. the `SwitchInt` (or `Assert`) you can assume when checking the corresponding successor.
740    fn check_terminator(
741        &mut self,
742        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
743        env: &mut TypeEnv,
744        terminator: &Terminator<'tcx>,
745        last_stmt_span: Option<Span>,
746    ) -> Result<Vec<(BasicBlock, Guard)>> {
747        let source_info = terminator.source_info;
748        let terminator_span = source_info.span;
749        match &terminator.kind {
750            TerminatorKind::Return => {
751                self.check_ret(infcx, env, last_stmt_span.unwrap_or(terminator_span))?;
752                Ok(vec![])
753            }
754            TerminatorKind::Unreachable => Ok(vec![]),
755            TerminatorKind::CoroutineDrop => Ok(vec![]),
756            TerminatorKind::Goto { target } => Ok(vec![(*target, Guard::None)]),
757            TerminatorKind::Yield { resume, resume_arg, .. } => {
758                if let Some(resume_ty) = self.resume_ty.clone() {
759                    self.check_assign_ty(infcx, env, resume_arg, resume_ty, terminator_span)
760                        .with_span(terminator_span)?;
761                } else {
762                    bug!("yield in non-generator function");
763                }
764                Ok(vec![(*resume, Guard::None)])
765            }
766            TerminatorKind::SwitchInt { discr, targets } => {
767                let discr_ty = self
768                    .check_operand(infcx, env, terminator_span, discr)
769                    .with_span(terminator_span)?;
770                if discr_ty.is_integral() || discr_ty.is_bool() || discr_ty.is_char() {
771                    Ok(Self::check_if(&discr_ty, targets))
772                } else {
773                    Ok(self.check_match(infcx, env, &discr_ty, targets, terminator_span))
774                }
775            }
776            TerminatorKind::Call { kind, args, destination, target, .. } => {
777                let actuals = self
778                    .check_operands(infcx, env, terminator_span, args)
779                    .with_span(terminator_span)?;
780                let ret = match kind {
781                    mir::CallKind::FnDef { resolved_id, resolved_args, .. } => {
782                        let fn_sig = self.genv.fn_sig(*resolved_id).with_span(terminator_span)?;
783                        let generic_args = instantiate_args_for_fun_call(
784                            self.genv,
785                            self.checker_id.root_id().to_def_id(),
786                            *resolved_id,
787                            &resolved_args.lowered,
788                        )
789                        .with_span(terminator_span)?;
790                        self.check_call(
791                            infcx,
792                            env,
793                            terminator_span,
794                            Some(*resolved_id),
795                            fn_sig,
796                            &generic_args,
797                            &actuals,
798                        )?
799                        .output
800                    }
801                    mir::CallKind::FnPtr { operand, .. } => {
802                        let ty = self
803                            .check_operand(infcx, env, terminator_span, operand)
804                            .with_span(terminator_span)?;
805                        if let TyKind::Indexed(BaseTy::FnPtr(fn_sig), _) = infcx.unpack(&ty).kind()
806                        {
807                            self.check_call(
808                                infcx,
809                                env,
810                                terminator_span,
811                                None,
812                                EarlyBinder(fn_sig.clone()),
813                                &[],
814                                &actuals,
815                            )?
816                            .output
817                        } else {
818                            bug!("TODO: fnptr call {ty:?}")
819                        }
820                    }
821                };
822
823                let name = destination.name(&self.body.local_names);
824                let ret = infcx.unpack_at_name(name, &ret);
825                infcx.assume_invariants(&ret);
826
827                env.assign(&mut infcx.at(terminator_span), destination, ret)
828                    .with_span(terminator_span)?;
829
830                if let Some(target) = target {
831                    Ok(vec![(*target, Guard::None)])
832                } else {
833                    Ok(vec![])
834                }
835            }
836            TerminatorKind::Assert { cond, expected, target, msg } => {
837                Ok(vec![(
838                    *target,
839                    self.check_assert(infcx, env, terminator_span, cond, *expected, msg)
840                        .with_span(terminator_span)?,
841                )])
842            }
843            TerminatorKind::Drop { place, target, .. } => {
844                let _ = env.move_place(&mut infcx.at(terminator_span), place);
845                Ok(vec![(*target, Guard::None)])
846            }
847            TerminatorKind::FalseEdge { real_target, .. } => Ok(vec![(*real_target, Guard::None)]),
848            TerminatorKind::FalseUnwind { real_target, .. } => {
849                Ok(vec![(*real_target, Guard::None)])
850            }
851            TerminatorKind::UnwindResume => bug!("TODO: implement checking of cleanup code"),
852        }
853    }
854
855    fn check_ret(
856        &mut self,
857        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
858        env: &mut TypeEnv,
859        span: Span,
860    ) -> Result {
861        let obligations = infcx
862            .at(span)
863            .ensure_resolved_evars(|infcx| {
864                let ret_place_ty = env.lookup_place(infcx, Place::RETURN)?;
865                let output = self
866                    .fn_sig
867                    .output
868                    .replace_bound_refts_with(|sort, mode, _| infcx.fresh_infer_var(sort, mode));
869                let obligations =
870                    infcx.subtyping_with_env(env, &ret_place_ty, &output.ret, ConstrReason::Ret)?;
871
872                env.check_ensures(infcx, &output.ensures, ConstrReason::Ret)?;
873
874                Ok(obligations)
875            })
876            .with_span(span)?;
877
878        self.check_coroutine_obligations(infcx, obligations)
879    }
880
881    #[expect(clippy::too_many_arguments)]
882    fn check_call(
883        &mut self,
884        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
885        env: &mut TypeEnv,
886        span: Span,
887        callee_def_id: Option<DefId>,
888        fn_sig: EarlyBinder<PolyFnSig>,
889        generic_args: &[GenericArg],
890        actuals: &[Ty],
891    ) -> Result<ResolvedCall> {
892        let genv = self.genv;
893        let tcx = genv.tcx();
894
895        let actuals =
896            unfold_local_ptrs(infcx, env, fn_sig.skip_binder_ref(), actuals).with_span(span)?;
897        let actuals = infer_under_mut_ref_hack(infcx, &actuals, fn_sig.skip_binder_ref());
898        infcx.push_evar_scope();
899
900        // Replace holes in generic arguments with fresh inference variables
901        let generic_args = infcx.instantiate_generic_args(generic_args);
902
903        // Generate fresh inference variables for refinement arguments
904        let early_refine_args = match callee_def_id {
905            Some(callee_def_id) => {
906                infcx
907                    .instantiate_refine_args(callee_def_id, &generic_args)
908                    .with_span(span)?
909            }
910            None => rty::List::empty(),
911        };
912
913        let clauses = match callee_def_id {
914            Some(callee_def_id) => {
915                genv.predicates_of(callee_def_id)
916                    .with_span(span)?
917                    .predicates()
918                    .instantiate(tcx, &generic_args, &early_refine_args)
919            }
920            None => crate::rty::List::empty(),
921        };
922
923        let (clauses, fn_clauses) = Clause::split_off_fn_trait_clauses(self.genv, &clauses);
924        infcx
925            .at(span)
926            .check_non_closure_clauses(&clauses, ConstrReason::Call)
927            .with_span(span)?;
928
929        for fn_trait_pred in &fn_clauses {
930            self.check_fn_trait_clause(infcx, fn_trait_pred, span)?;
931        }
932
933        // Instantiate function signature and normalize it
934        let late_refine_args = vec![];
935        let fn_sig = fn_sig
936            .instantiate(tcx, &generic_args, &early_refine_args)
937            .replace_bound_vars(
938                |_| rty::ReErased,
939                |sort, mode, _| infcx.fresh_infer_var(sort, mode),
940            );
941
942        let fn_sig = fn_sig
943            .deeply_normalize(&mut infcx.at(span))
944            .with_span(span)?;
945
946        let mut at = infcx.at(span);
947
948        if let Some(callee_def_id) = callee_def_id
949            && genv.def_kind(callee_def_id).is_fn_like()
950        {
951            let callee_no_panic = fn_sig.no_panic();
952
953            at.check_pred(
954                Expr::implies(self.fn_sig.no_panic(), callee_no_panic),
955                ConstrReason::NoPanic(callee_def_id),
956            );
957        }
958
959        // Check requires predicates
960        for requires in fn_sig.requires() {
961            at.check_pred(requires, ConstrReason::Call);
962        }
963
964        // Check arguments
965        for (actual, formal) in iter::zip(actuals, fn_sig.inputs()) {
966            at.subtyping_with_env(env, &actual, formal, ConstrReason::Call)
967                .with_span(span)?;
968        }
969
970        infcx.pop_evar_scope().with_span(span)?;
971        env.fully_resolve_evars(infcx);
972
973        let output = infcx
974            .fully_resolve_evars(&fn_sig.output)
975            .replace_bound_refts_with(|sort, _, kind| {
976                Expr::fvar(infcx.define_bound_reft_var(sort, kind))
977            });
978
979        env.assume_ensures(infcx, &output.ensures, span);
980        fold_local_ptrs(infcx, env, span).with_span(span)?;
981
982        Ok(ResolvedCall {
983            output: output.ret,
984            _early_args: early_refine_args
985                .into_iter()
986                .map(|arg| infcx.fully_resolve_evars(arg))
987                .collect(),
988            _late_args: late_refine_args
989                .into_iter()
990                .map(|arg| infcx.fully_resolve_evars(&arg))
991                .collect(),
992        })
993    }
994
995    fn check_coroutine_obligations(
996        &mut self,
997        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
998        obligs: Vec<Binder<CoroutineObligPredicate>>,
999    ) -> Result {
1000        for oblig in obligs {
1001            // FIXME(nilehmann) we shouldn't be skipping this binder
1002            let oblig = oblig.skip_binder();
1003
1004            #[expect(clippy::disallowed_methods, reason = "coroutines cannot be extern speced")]
1005            let def_id = oblig.def_id.expect_local();
1006            let span = self.genv.tcx().def_span(def_id);
1007            let body = self.genv.mir(def_id).with_span(span)?;
1008            Checker::run(
1009                infcx.change_item(def_id, &body.infcx),
1010                def_id,
1011                self.inherited.reborrow(),
1012                oblig.to_poly_fn_sig(),
1013            )?;
1014        }
1015        Ok(())
1016    }
1017
1018    fn find_self_ty_fn_sig(
1019        &self,
1020        self_ty: rustc_middle::ty::Ty<'tcx>,
1021        span: Span,
1022    ) -> Result<PolyFnSig> {
1023        let tcx = self.genv.tcx();
1024        let mut def_id = Some(self.checker_id.root_id().to_def_id());
1025        while let Some(did) = def_id {
1026            let generic_predicates = self
1027                .genv
1028                .predicates_of(did)
1029                .with_span(span)?
1030                .instantiate_identity();
1031            let predicates = generic_predicates.predicates;
1032
1033            for poly_fn_trait_pred in Clause::split_off_fn_trait_clauses(self.genv, &predicates).1 {
1034                if poly_fn_trait_pred.skip_binder_ref().self_ty.to_rustc(tcx) == self_ty {
1035                    return Ok(poly_fn_trait_pred.map(|fn_trait_pred| fn_trait_pred.fndef_sig()));
1036                }
1037            }
1038            // Continue to the parent if we didn't find a match
1039            def_id = generic_predicates.parent;
1040        }
1041
1042        span_bug!(
1043            span,
1044            "cannot find self_ty_fn_sig for {:?} with self_ty = {self_ty:?}",
1045            self.checker_id
1046        );
1047    }
1048
1049    fn check_fn_trait_clause(
1050        &mut self,
1051        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1052        poly_fn_trait_pred: &Binder<FnTraitPredicate>,
1053        span: Span,
1054    ) -> Result {
1055        let self_ty = poly_fn_trait_pred
1056            .skip_binder_ref()
1057            .self_ty
1058            .as_bty_skipping_existentials();
1059        let oblig_sig = poly_fn_trait_pred.map_ref(|fn_trait_pred| fn_trait_pred.fndef_sig());
1060        match self_ty {
1061            Some(BaseTy::Closure(def_id, _, _, _)) => {
1062                let Some(poly_sig) = self.inherited.closures.get(def_id).cloned() else {
1063                    span_bug!(span, "missing template for closure {def_id:?}");
1064                };
1065                check_fn_subtyping(infcx, SubFn::Mono(poly_sig.clone()), &oblig_sig, span)
1066                    .with_span(span)?;
1067            }
1068            Some(BaseTy::FnDef(def_id, args)) => {
1069                // Generates "function subtyping" obligations between the (super-type) `oblig_sig` in the `fn_trait_pred`
1070                // and the (sub-type) corresponding to the signature of `def_id + args`.
1071                // See `tests/neg/surface/fndef00.rs`
1072                let sub_sig = self.genv.fn_sig(def_id).with_span(span)?;
1073                check_fn_subtyping(
1074                    infcx,
1075                    SubFn::Poly(*def_id, sub_sig, args.clone()),
1076                    &oblig_sig,
1077                    span,
1078                )
1079                .with_span(span)?;
1080            }
1081            Some(BaseTy::FnPtr(sub_sig)) => {
1082                check_fn_subtyping(infcx, SubFn::Mono(sub_sig.clone()), &oblig_sig, span)
1083                    .with_span(span)?;
1084            }
1085
1086            // Some(self_ty) => {
1087            Some(self_ty @ BaseTy::Param(_)) => {
1088                // Step 1. Find matching clause and turn it into a FnSig
1089                let tcx = self.genv.tcx();
1090                let self_ty = self_ty.to_rustc(tcx);
1091                let sub_sig = self.find_self_ty_fn_sig(self_ty, span)?;
1092                // Step 2. Issue the subtyping
1093                check_fn_subtyping(infcx, SubFn::Mono(sub_sig), &oblig_sig, span)
1094                    .with_span(span)?;
1095            }
1096            _ => {}
1097        }
1098        Ok(())
1099    }
1100
1101    fn check_assert(
1102        &mut self,
1103        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1104        env: &mut TypeEnv,
1105        terminator_span: Span,
1106        cond: &Operand<'tcx>,
1107        expected: bool,
1108        msg: &AssertKind,
1109    ) -> InferResult<Guard> {
1110        let ty = self.check_operand(infcx, env, terminator_span, cond)?;
1111        let TyKind::Indexed(BaseTy::Bool, idx) = ty.kind() else {
1112            tracked_span_bug!("unexpected ty `{ty:?}`");
1113        };
1114        let pred = if expected { idx.clone() } else { idx.not() };
1115
1116        let msg = match msg {
1117            AssertKind::DivisionByZero => "possible division by zero",
1118            AssertKind::BoundsCheck => "possible out-of-bounds access",
1119            AssertKind::RemainderByZero => "possible remainder with a divisor of zero",
1120            AssertKind::Overflow(mir::BinOp::Div) => "possible division with overflow",
1121            AssertKind::Overflow(mir::BinOp::Rem) => "possible reminder with overflow",
1122            AssertKind::Overflow(_) => return Ok(Guard::Pred(pred)),
1123        };
1124        infcx
1125            .at(terminator_span)
1126            .check_pred(&pred, ConstrReason::Assert(msg));
1127        Ok(Guard::Pred(pred))
1128    }
1129
1130    /// Checks conditional branching as in a `match` statement. [`SwitchTargets`](https://doc.rust-lang.org/nightly/nightly-rustc/stable_mir/mir/struct.SwitchTargets.html) contains a list of branches - the exact bit value which is being compared and the block to jump to. Using the conditionals, each branch can be checked using the new control flow information.
1131    /// See <https://github.com/flux-rs/flux/pull/840#discussion_r1786543174>
1132    fn check_if(discr_ty: &Ty, targets: &SwitchTargets) -> Vec<(BasicBlock, Guard)> {
1133        let mk = |bits| {
1134            match discr_ty.kind() {
1135                TyKind::Indexed(BaseTy::Bool, idx) => {
1136                    if bits == 0 {
1137                        idx.not()
1138                    } else {
1139                        idx.clone()
1140                    }
1141                }
1142                TyKind::Indexed(bty @ (BaseTy::Int(_) | BaseTy::Uint(_) | BaseTy::Char), idx) => {
1143                    Expr::eq(idx.clone(), Expr::from_bits(bty, bits))
1144                }
1145                _ => tracked_span_bug!("unexpected discr_ty {:?}", discr_ty),
1146            }
1147        };
1148
1149        let mut successors = vec![];
1150
1151        for (bits, bb) in targets.iter() {
1152            successors.push((bb, Guard::Pred(mk(bits))));
1153        }
1154        let otherwise = Expr::and_from_iter(targets.iter().map(|(bits, _)| mk(bits).not()));
1155        successors.push((targets.otherwise(), Guard::Pred(otherwise)));
1156
1157        successors
1158    }
1159
1160    fn check_match(
1161        &mut self,
1162        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1163        env: &mut TypeEnv,
1164        discr_ty: &Ty,
1165        targets: &SwitchTargets,
1166        span: Span,
1167    ) -> Vec<(BasicBlock, Guard)> {
1168        let (adt_def, place) = discr_ty.expect_discr();
1169        let idx = if let Ok(ty) = env.lookup_place(&mut infcx.at(span), place)
1170            && let TyKind::Indexed(_, idx) = ty.kind()
1171        {
1172            Some(idx.clone())
1173        } else {
1174            None
1175        };
1176
1177        let mut successors = vec![];
1178        let mut remaining: FxHashMap<u128, VariantIdx> = adt_def
1179            .discriminants()
1180            .map(|(idx, discr)| (discr, idx))
1181            .collect();
1182        for (bits, bb) in targets.iter() {
1183            let variant_idx = remaining
1184                .remove(&bits)
1185                .expect("value doesn't correspond to any variant");
1186            successors.push((bb, Guard::Match(place.clone(), variant_idx)));
1187        }
1188        let guard = if remaining.len() == 1 {
1189            // If there's only one variant left, we know for sure that this is the one, so can force an unfold
1190            let (_, variant_idx) = remaining
1191                .into_iter()
1192                .next()
1193                .unwrap_or_else(|| tracked_span_bug!());
1194            Guard::Match(place.clone(), variant_idx)
1195        } else if adt_def.sort_def().is_reflected()
1196            && let Some(idx) = idx
1197        {
1198            // If there's more than one variant left, we can only assume the `is_ctor` holds for one of them
1199            let mut cases = vec![];
1200            for (_, variant_idx) in remaining {
1201                let did = adt_def.did();
1202                cases.push(rty::Expr::is_ctor(did, variant_idx, idx.clone()));
1203            }
1204            Guard::Pred(Expr::or_from_iter(cases))
1205        } else {
1206            Guard::None
1207        };
1208        successors.push((targets.otherwise(), guard));
1209
1210        successors
1211    }
1212
1213    fn check_successors(
1214        &mut self,
1215        mut infcx: InferCtxt<'_, 'genv, 'tcx>,
1216        env: TypeEnv,
1217        from: BasicBlock,
1218        terminator_span: Span,
1219        successors: Vec<(BasicBlock, Guard)>,
1220    ) -> Result {
1221        for (target, guard) in successors {
1222            let mut infcx = infcx.branch();
1223            let mut env = env.clone();
1224            match guard {
1225                Guard::None => {}
1226                Guard::Pred(expr) => {
1227                    infcx.assume_pred(&expr);
1228                }
1229                Guard::Match(place, variant_idx) => {
1230                    env.downcast(&mut infcx.at(terminator_span), &place, variant_idx)
1231                        .with_span(terminator_span)?;
1232                }
1233            }
1234            self.check_ghost_statements_at(
1235                &mut infcx,
1236                &mut env,
1237                Point::Edge(from, target),
1238                terminator_span,
1239            )?;
1240            self.check_goto(infcx, env, terminator_span, target)?;
1241        }
1242        Ok(())
1243    }
1244
1245    fn check_goto(
1246        &mut self,
1247        mut infcx: InferCtxt<'_, 'genv, 'tcx>,
1248        mut env: TypeEnv,
1249        span: Span,
1250        target: BasicBlock,
1251    ) -> Result {
1252        if self.is_exit_block(target) {
1253            // We inline *exit basic blocks* (i.e., that just return) because this typically
1254            // gives us better a better error span.
1255            let mut location = Location { block: target, statement_index: 0 };
1256            for _ in &self.body.basic_blocks[target].statements {
1257                self.check_ghost_statements_at(
1258                    &mut infcx,
1259                    &mut env,
1260                    Point::BeforeLocation(location),
1261                    span,
1262                )?;
1263                location = location.successor_within_block();
1264            }
1265            self.check_ghost_statements_at(
1266                &mut infcx,
1267                &mut env,
1268                Point::BeforeLocation(location),
1269                span,
1270            )?;
1271            self.check_ret(&mut infcx, &mut env, span)
1272        } else if self.body.is_join_point(target) {
1273            if M::check_goto_join_point(self, infcx, env, span, target)? {
1274                self.queue.insert(target);
1275            }
1276            Ok(())
1277        } else {
1278            self.check_basic_block(infcx, env, target)
1279        }
1280    }
1281
1282    fn closure_template(
1283        &mut self,
1284        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1285        env: &mut TypeEnv,
1286        stmt_span: Span,
1287        args: &flux_rustc_bridge::ty::GenericArgs,
1288        operands: &[Operand<'tcx>],
1289    ) -> InferResult<(Vec<Ty>, PolyFnSig)> {
1290        let upvar_tys = self
1291            .check_operands(infcx, env, stmt_span, operands)?
1292            .into_iter()
1293            .map(|ty| {
1294                if let TyKind::Ptr(PtrKind::Mut(re), path) = ty.kind() {
1295                    env.ptr_to_ref(
1296                        &mut infcx.at(stmt_span),
1297                        ConstrReason::Other,
1298                        *re,
1299                        path,
1300                        PtrToRefBound::Infer,
1301                    )
1302                } else {
1303                    Ok(ty.clone())
1304                }
1305            })
1306            .try_collect_vec()?;
1307
1308        let closure_args = args.as_closure();
1309        let ty = closure_args.sig_as_fn_ptr_ty();
1310
1311        if let flux_rustc_bridge::ty::TyKind::FnPtr(poly_sig) = ty.kind() {
1312            let poly_sig = poly_sig.unpack_closure_sig();
1313            let poly_sig = self.refine_with_holes(&poly_sig)?;
1314            let poly_sig = poly_sig.hoist_input_binders();
1315            let poly_sig = poly_sig
1316                .replace_holes(|binders, kind| infcx.fresh_infer_var_for_hole(binders, kind));
1317
1318            Ok((upvar_tys, poly_sig))
1319        } else {
1320            bug!("check_rvalue: closure: expected fn_ptr ty, found {ty:?} in {args:?}");
1321        }
1322    }
1323
1324    fn check_closure_body(
1325        &mut self,
1326        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1327        did: &DefId,
1328        upvar_tys: &[Ty],
1329        args: &flux_rustc_bridge::ty::GenericArgs,
1330        poly_sig: &PolyFnSig,
1331    ) -> Result {
1332        let genv = self.genv;
1333        let tcx = genv.tcx();
1334        #[expect(clippy::disallowed_methods, reason = "closures cannot be extern speced")]
1335        let closure_id = did.expect_local();
1336        let span = tcx.def_span(closure_id);
1337        let body = genv.mir(closure_id).with_span(span)?;
1338        let no_panic = self.genv.no_panic(*did);
1339        let closure_sig = rty::to_closure_sig(tcx, closure_id, upvar_tys, args, poly_sig, no_panic);
1340        Checker::run(
1341            infcx.change_item(closure_id, &body.infcx),
1342            closure_id,
1343            self.inherited.reborrow(),
1344            closure_sig,
1345        )
1346    }
1347
1348    fn check_rvalue_closure(
1349        &mut self,
1350        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1351        env: &mut TypeEnv,
1352        stmt_span: Span,
1353        did: &DefId,
1354        args: &flux_rustc_bridge::ty::GenericArgs,
1355        operands: &[Operand<'tcx>],
1356    ) -> Result<Ty> {
1357        // (1) Create the closure template
1358        let (upvar_tys, poly_sig) = self
1359            .closure_template(infcx, env, stmt_span, args, operands)
1360            .with_span(stmt_span)?;
1361        // (2) Check the closure body against the template
1362        self.check_closure_body(infcx, did, &upvar_tys, args, &poly_sig)?;
1363        // (3) "Save" the closure type in the `closures` map
1364        self.inherited.closures.insert(*did, poly_sig);
1365        // (4) Return the closure type
1366        let no_panic = self.genv.no_panic(*did);
1367        Ok(Ty::closure(*did, upvar_tys, args, no_panic))
1368    }
1369
1370    fn check_rvalue(
1371        &mut self,
1372        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1373        env: &mut TypeEnv,
1374        stmt_span: Span,
1375        rvalue: &Rvalue<'tcx>,
1376    ) -> Result<Ty> {
1377        let genv = self.genv;
1378        match rvalue {
1379            Rvalue::Use(operand) => {
1380                self.check_operand(infcx, env, stmt_span, operand)
1381                    .with_span(stmt_span)
1382            }
1383            Rvalue::Repeat(operand, c) => {
1384                let ty = self
1385                    .check_operand(infcx, env, stmt_span, operand)
1386                    .with_span(stmt_span)?;
1387                Ok(Ty::array(ty, c.clone()))
1388            }
1389            Rvalue::Ref(r, BorrowKind::Mut { .. }, place) => {
1390                env.borrow(&mut infcx.at(stmt_span), *r, Mutability::Mut, place)
1391                    .with_span(stmt_span)
1392            }
1393            Rvalue::Ref(r, BorrowKind::Shared | BorrowKind::Fake(..), place) => {
1394                env.borrow(&mut infcx.at(stmt_span), *r, Mutability::Not, place)
1395                    .with_span(stmt_span)
1396            }
1397
1398            Rvalue::RawPtr(mir::RawPtrKind::FakeForPtrMetadata, place) => {
1399                // see tests/tests/neg/surface/slice02.rs for what happens without unfolding here.
1400                env.unfold(infcx, place, stmt_span).with_span(stmt_span)?;
1401                let ty = env
1402                    .lookup_place(&mut infcx.at(stmt_span), place)
1403                    .with_span(stmt_span)?;
1404                let ty = BaseTy::RawPtrMetadata(ty).to_ty();
1405                Ok(ty)
1406            }
1407            Rvalue::RawPtr(kind, place) => {
1408                // ignore any refinements on the type stored at place
1409                let ty = &env.lookup_rust_ty(genv, place).with_span(stmt_span)?;
1410                let ty = self.refine_default(ty).with_span(stmt_span)?;
1411                let ty = BaseTy::RawPtr(ty, kind.to_mutbl_lossy()).to_ty();
1412                Ok(ty)
1413            }
1414            Rvalue::Cast(kind, op, to) => {
1415                let from = self
1416                    .check_operand(infcx, env, stmt_span, op)
1417                    .with_span(stmt_span)?;
1418                self.check_cast(infcx, env, stmt_span, *kind, &from, to)
1419                    .with_span(stmt_span)
1420            }
1421            Rvalue::BinaryOp(bin_op, op1, op2) => {
1422                self.check_binary_op(infcx, env, stmt_span, *bin_op, op1, op2)
1423                    .with_span(stmt_span)
1424            }
1425
1426            Rvalue::UnaryOp(UnOp::PtrMetadata, Operand::Copy(place))
1427            | Rvalue::UnaryOp(UnOp::PtrMetadata, Operand::Move(place)) => {
1428                self.check_raw_ptr_metadata(infcx, env, stmt_span, place)
1429            }
1430            Rvalue::UnaryOp(un_op, op) => {
1431                self.check_unary_op(infcx, env, stmt_span, *un_op, op)
1432                    .with_span(stmt_span)
1433            }
1434            Rvalue::Discriminant(place) => {
1435                let ty = env
1436                    .lookup_place(&mut infcx.at(stmt_span), place)
1437                    .with_span(stmt_span)?;
1438                // HACK(nilehmann, mut-ref-unfolding) place should be unfolded here.
1439                let (adt_def, ..) = ty
1440                    .as_bty_skipping_existentials()
1441                    .unwrap_or_else(|| tracked_span_bug!())
1442                    .expect_adt();
1443                Ok(Ty::discr(adt_def.clone(), place.clone()))
1444            }
1445            Rvalue::Aggregate(
1446                AggregateKind::Adt(def_id, variant_idx, args, _, field_idx),
1447                operands,
1448            ) => {
1449                let actuals = self
1450                    .check_operands(infcx, env, stmt_span, operands)
1451                    .with_span(stmt_span)?;
1452                let sig = genv
1453                    .variant_sig(*def_id, *variant_idx)
1454                    .with_span(stmt_span)?
1455                    .ok_or_query_err(*def_id)
1456                    .with_span(stmt_span)?
1457                    .to_poly_fn_sig(*field_idx);
1458
1459                let args = instantiate_args_for_constructor(
1460                    genv,
1461                    self.checker_id.root_id().to_def_id(),
1462                    *def_id,
1463                    args,
1464                )
1465                .with_span(stmt_span)?;
1466                self.check_call(infcx, env, stmt_span, Some(*def_id), sig, &args, &actuals)
1467                    .map(|resolved_call| resolved_call.output)
1468            }
1469            Rvalue::Aggregate(AggregateKind::Array(arr_ty), operands) => {
1470                let args = self
1471                    .check_operands(infcx, env, stmt_span, operands)
1472                    .with_span(stmt_span)?;
1473                let arr_ty = self.refine_with_holes(arr_ty).with_span(stmt_span)?;
1474                self.check_mk_array(infcx, env, stmt_span, &args, arr_ty)
1475                    .with_span(stmt_span)
1476            }
1477            Rvalue::Aggregate(AggregateKind::Tuple, args) => {
1478                let tys = self
1479                    .check_operands(infcx, env, stmt_span, args)
1480                    .with_span(stmt_span)?;
1481                Ok(Ty::tuple(tys))
1482            }
1483            Rvalue::Aggregate(AggregateKind::Closure(did, args), operands) => {
1484                self.check_rvalue_closure(infcx, env, stmt_span, did, args, operands)
1485            }
1486            Rvalue::Aggregate(AggregateKind::Coroutine(did, args), ops) => {
1487                let coroutine_args = args.as_coroutine();
1488                let resume_ty = self
1489                    .refine_default(coroutine_args.resume_ty())
1490                    .with_span(stmt_span)?;
1491                let upvar_tys = self
1492                    .check_operands(infcx, env, stmt_span, ops)
1493                    .with_span(stmt_span)?;
1494                Ok(Ty::coroutine(*did, resume_ty, upvar_tys.into(), args.clone()))
1495            }
1496            Rvalue::ShallowInitBox(operand, _) => {
1497                self.check_operand(infcx, env, stmt_span, operand)
1498                    .with_span(stmt_span)?;
1499                Ty::mk_box_with_default_alloc(self.genv, Ty::uninit()).with_span(stmt_span)
1500            }
1501        }
1502    }
1503
1504    fn check_raw_ptr_metadata(
1505        &mut self,
1506        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1507        env: &mut TypeEnv,
1508        stmt_span: Span,
1509        place: &Place,
1510    ) -> Result<Ty> {
1511        let ty = env
1512            .lookup_place(&mut infcx.at(stmt_span), place)
1513            .with_span(stmt_span)?;
1514        let ty = match ty.kind() {
1515            TyKind::Indexed(BaseTy::RawPtrMetadata(ty), _)
1516            | TyKind::Indexed(BaseTy::Ref(_, ty, _), _) => ty,
1517            _ => tracked_span_bug!("check_metadata: bug! unexpected type `{ty:?}`"),
1518        };
1519        match ty.kind() {
1520            TyKind::Indexed(BaseTy::Array(_, len), _) => {
1521                let idx = Expr::from_const(self.genv.tcx(), len);
1522                Ok(Ty::indexed(BaseTy::Uint(UintTy::Usize), idx))
1523            }
1524            TyKind::Indexed(BaseTy::Slice(_), len) => {
1525                Ok(Ty::indexed(BaseTy::Uint(UintTy::Usize), len.clone()))
1526            }
1527            _ => Ok(Ty::unit()),
1528        }
1529    }
1530
1531    fn check_binary_op(
1532        &mut self,
1533        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1534        env: &mut TypeEnv,
1535        stmt_span: Span,
1536        bin_op: mir::BinOp,
1537        op1: &Operand<'tcx>,
1538        op2: &Operand<'tcx>,
1539    ) -> InferResult<Ty> {
1540        let ty1 = self.check_operand(infcx, env, stmt_span, op1)?;
1541        let ty2 = self.check_operand(infcx, env, stmt_span, op2)?;
1542
1543        match (ty1.kind(), ty2.kind()) {
1544            (TyKind::Indexed(bty1, idx1), TyKind::Indexed(bty2, idx2)) => {
1545                let rule =
1546                    primops::match_bin_op(bin_op, bty1, idx1, bty2, idx2, infcx.check_overflow);
1547                if let Some(pre) = rule.precondition {
1548                    infcx.at(stmt_span).check_pred(pre.pred, pre.reason);
1549                }
1550
1551                Ok(rule.output_type)
1552            }
1553            _ => tracked_span_bug!("incompatible types: `{ty1:?}` `{ty2:?}`"),
1554        }
1555    }
1556
1557    fn check_unary_op(
1558        &mut self,
1559        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1560        env: &mut TypeEnv,
1561        stmt_span: Span,
1562        un_op: mir::UnOp,
1563        op: &Operand<'tcx>,
1564    ) -> InferResult<Ty> {
1565        let ty = self.check_operand(infcx, env, stmt_span, op)?;
1566        match ty.kind() {
1567            TyKind::Indexed(bty, idx) => {
1568                let rule = primops::match_un_op(un_op, bty, idx, infcx.check_overflow);
1569                if let Some(pre) = rule.precondition {
1570                    infcx.at(stmt_span).check_pred(pre.pred, pre.reason);
1571                }
1572                Ok(rule.output_type)
1573            }
1574            _ => tracked_span_bug!("invalid type for unary operator `{un_op:?}` `{ty:?}`"),
1575        }
1576    }
1577
1578    fn check_mk_array(
1579        &mut self,
1580        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1581        env: &mut TypeEnv,
1582        stmt_span: Span,
1583        args: &[Ty],
1584        arr_ty: Ty,
1585    ) -> InferResult<Ty> {
1586        let arr_ty = infcx.ensure_resolved_evars(|infcx| {
1587            let arr_ty =
1588                arr_ty.replace_holes(|binders, kind| infcx.fresh_infer_var_for_hole(binders, kind));
1589
1590            let (arr_ty, pred) = arr_ty.unconstr();
1591            let mut at = infcx.at(stmt_span);
1592            at.check_pred(&pred, ConstrReason::Other);
1593            for ty in args {
1594                at.subtyping_with_env(env, ty, &arr_ty, ConstrReason::Other)?;
1595            }
1596            Ok(arr_ty)
1597        })?;
1598        let arr_ty = infcx.fully_resolve_evars(&arr_ty);
1599
1600        Ok(Ty::array(arr_ty, rty::Const::from_usize(self.genv.tcx(), args.len())))
1601    }
1602
1603    fn check_cast(
1604        &self,
1605        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1606        env: &mut TypeEnv,
1607        stmt_span: Span,
1608        kind: CastKind,
1609        from: &Ty,
1610        to: &ty::Ty,
1611    ) -> InferResult<Ty> {
1612        use ty::TyKind as RustTy;
1613        let ty = match kind {
1614            CastKind::PointerExposeProvenance => {
1615                match to.kind() {
1616                    RustTy::Int(int_ty) => Ty::int(*int_ty),
1617                    RustTy::Uint(uint_ty) => Ty::uint(*uint_ty),
1618                    _ => tracked_span_bug!("unsupported PointerExposeProvenance cast"),
1619                }
1620            }
1621            CastKind::IntToInt => {
1622                match (from.kind(), to.kind()) {
1623                    (Bool!(idx), RustTy::Int(int_ty)) => bool_int_cast(idx, *int_ty),
1624                    (Bool!(idx), RustTy::Uint(uint_ty)) => bool_uint_cast(idx, *uint_ty),
1625                    (Int!(int_ty1, idx), RustTy::Int(int_ty2)) => {
1626                        int_int_cast(idx, *int_ty1, *int_ty2)
1627                    }
1628                    (Uint!(uint_ty1, idx), RustTy::Uint(uint_ty2)) => {
1629                        uint_uint_cast(idx, *uint_ty1, *uint_ty2)
1630                    }
1631                    (Uint!(uint_ty, idx), RustTy::Int(int_ty)) => {
1632                        uint_int_cast(idx, *uint_ty, *int_ty)
1633                    }
1634                    (Int!(_, _), RustTy::Uint(uint_ty)) => Ty::uint(*uint_ty),
1635                    (TyKind::Discr(adt_def, _), RustTy::Int(int_ty)) => {
1636                        Self::discr_to_int_cast(adt_def, BaseTy::Int(*int_ty))
1637                    }
1638                    (TyKind::Discr(adt_def, _place), RustTy::Uint(uint_ty)) => {
1639                        Self::discr_to_int_cast(adt_def, BaseTy::Uint(*uint_ty))
1640                    }
1641                    (Char!(idx), RustTy::Uint(uint_ty)) => char_uint_cast(idx, *uint_ty),
1642                    (Uint!(_, idx), RustTy::Char) => uint_char_cast(idx),
1643                    _ => {
1644                        tracked_span_bug!("invalid int to int cast {from:?} --> {to:?}")
1645                    }
1646                }
1647            }
1648            CastKind::PointerCoercion(mir::PointerCast::Unsize) => {
1649                self.check_unsize_cast(infcx, env, stmt_span, from, to)?
1650            }
1651            CastKind::FloatToInt
1652            | CastKind::IntToFloat
1653            | CastKind::PtrToPtr
1654            | CastKind::PointerCoercion(mir::PointerCast::MutToConstPointer)
1655            | CastKind::PointerCoercion(mir::PointerCast::ClosureFnPointer)
1656            | CastKind::PointerWithExposedProvenance => self.refine_default(to)?,
1657            CastKind::PointerCoercion(mir::PointerCast::ReifyFnPointer) => {
1658                let to = self.refine_default(to)?;
1659                if let TyKind::Indexed(BaseTy::FnDef(def_id, args), _) = from.kind()
1660                    && let TyKind::Indexed(BaseTy::FnPtr(super_sig), _) = to.kind()
1661                {
1662                    let current_did = infcx.def_id;
1663                    let sub_sig =
1664                        SubFn::Poly(current_did, infcx.genv.fn_sig(*def_id)?, args.clone());
1665                    // TODO:CLOSURE:2 TODO(RJ) dicey maneuver? assumes that sig_b is unrefined?
1666                    check_fn_subtyping(infcx, sub_sig, super_sig, stmt_span)?;
1667                    to
1668                } else {
1669                    tracked_span_bug!("invalid cast from `{from:?}` to `{to:?}`")
1670                }
1671            }
1672        };
1673        Ok(ty)
1674    }
1675
1676    fn discr_to_int_cast(adt_def: &AdtDef, bty: BaseTy) -> Ty {
1677        // TODO: This could be a giant disjunction, maybe better (if less precise) to use the interval?
1678        let vals = adt_def
1679            .discriminants()
1680            .map(|(_, idx)| Expr::eq(Expr::nu(), Expr::from_bits(&bty, idx)))
1681            .collect_vec();
1682        Ty::exists_with_constr(bty, Expr::or_from_iter(vals))
1683    }
1684
1685    fn check_unsize_cast(
1686        &self,
1687        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1688        env: &mut TypeEnv,
1689        span: Span,
1690        src: &Ty,
1691        dst: &ty::Ty,
1692    ) -> InferResult<Ty> {
1693        // Convert `ptr` to `&mut`
1694        let src = if let TyKind::Ptr(PtrKind::Mut(re), path) = src.kind() {
1695            env.ptr_to_ref(
1696                &mut infcx.at(span),
1697                ConstrReason::Other,
1698                *re,
1699                path,
1700                PtrToRefBound::Identity,
1701            )?
1702        } else {
1703            src.clone()
1704        };
1705
1706        if let ty::TyKind::Ref(_, deref_ty, _) = dst.kind()
1707            && let ty::TyKind::Dynamic(..) = deref_ty.kind()
1708        {
1709            return Ok(self.refine_default(dst)?);
1710        }
1711
1712        // `&mut [T; n] -> &mut [T]` or `&[T; n] -> &[T]`
1713        if let TyKind::Indexed(BaseTy::Ref(_, deref_ty, _), _) = src.kind()
1714            && let TyKind::Indexed(BaseTy::Array(arr_ty, arr_len), _) = deref_ty.kind()
1715            && let ty::TyKind::Ref(re, _, mutbl) = dst.kind()
1716        {
1717            let idx = Expr::from_const(self.genv.tcx(), arr_len);
1718            Ok(Ty::mk_ref(*re, Ty::indexed(BaseTy::Slice(arr_ty.clone()), idx), *mutbl))
1719
1720        // `Box<[T; n]> -> Box<[T]>`
1721        } else if let TyKind::Indexed(BaseTy::Adt(adt_def, args), _) = src.kind()
1722            && adt_def.is_box()
1723            && let (deref_ty, alloc_ty) = args.box_args()
1724            && let TyKind::Indexed(BaseTy::Array(arr_ty, arr_len), _) = deref_ty.kind()
1725        {
1726            let idx = Expr::from_const(self.genv.tcx(), arr_len);
1727            Ok(Ty::mk_box(
1728                self.genv,
1729                Ty::indexed(BaseTy::Slice(arr_ty.clone()), idx),
1730                alloc_ty.clone(),
1731            )?)
1732        } else {
1733            Err(query_bug!("unsupported unsize cast from `{src:?}` to `{dst:?}`"))?
1734        }
1735    }
1736
1737    fn check_operands(
1738        &mut self,
1739        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1740        env: &mut TypeEnv,
1741        span: Span,
1742        operands: &[Operand<'tcx>],
1743    ) -> InferResult<Vec<Ty>> {
1744        operands
1745            .iter()
1746            .map(|op| self.check_operand(infcx, env, span, op))
1747            .try_collect()
1748    }
1749
1750    fn check_operand(
1751        &mut self,
1752        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1753        env: &mut TypeEnv,
1754        span: Span,
1755        operand: &Operand<'tcx>,
1756    ) -> InferResult<Ty> {
1757        let ty = match operand {
1758            Operand::Copy(p) => env.lookup_place(&mut infcx.at(span), p)?,
1759            Operand::Move(p) => env.move_place(&mut infcx.at(span), p)?,
1760            Operand::Constant(c) => self.check_constant(infcx, c)?,
1761        };
1762        Ok(infcx.hoister(true).hoist(&ty))
1763    }
1764
1765    fn check_constant(
1766        &mut self,
1767        infcx: &InferCtxt<'_, 'genv, 'tcx>,
1768        constant: &ConstOperand<'tcx>,
1769    ) -> QueryResult<Ty> {
1770        use rustc_middle::mir::Const;
1771        match constant.const_ {
1772            Const::Ty(ty, cst) => self.check_ty_const(constant, cst, ty)?,
1773            Const::Val(val, ty) => self.check_const_val(val, ty)?,
1774            Const::Unevaluated(uneval, ty) => {
1775                self.check_uneval_const(infcx, constant, uneval, ty)?
1776            }
1777        }
1778        .map_or_else(|| self.refine_default(&constant.ty), Ok)
1779    }
1780
1781    fn check_ty_const(
1782        &mut self,
1783        constant: &ConstOperand<'tcx>,
1784        cst: rustc_middle::ty::Const<'tcx>,
1785        ty: rustc_middle::ty::Ty<'tcx>,
1786    ) -> QueryResult<Option<Ty>> {
1787        use rustc_middle::ty::ConstKind;
1788        match cst.kind() {
1789            ConstKind::Param(param) => {
1790                let idx = Expr::const_generic(param);
1791                let ctor = self
1792                    .default_refiner
1793                    .refine_ty_or_base(&constant.ty)?
1794                    .expect_base();
1795                Ok(Some(ctor.replace_bound_reft(&idx).to_ty()))
1796            }
1797            ConstKind::Value(val_tree) => {
1798                let val = self.genv.tcx().valtree_to_const_val(val_tree);
1799                Ok(self.check_const_val(val, ty)?)
1800            }
1801            _ => Ok(None),
1802        }
1803    }
1804
1805    fn check_const_val(
1806        &mut self,
1807        val: rustc_middle::mir::ConstValue,
1808        ty: rustc_middle::ty::Ty<'tcx>,
1809    ) -> QueryResult<Option<Ty>> {
1810        use rustc_middle::{mir::ConstValue, ty};
1811        match val {
1812            ConstValue::Scalar(scalar) => self.check_scalar(scalar, ty),
1813            ConstValue::ZeroSized if ty.is_unit() => Ok(Some(Ty::unit())),
1814            ConstValue::Slice { .. } => {
1815                if let ty::Ref(_, ref_ty, Mutability::Not) = ty.kind()
1816                    && ref_ty.is_str()
1817                    && let Some(data) = val.try_get_slice_bytes_for_diagnostics(self.genv.tcx())
1818                {
1819                    let str = String::from_utf8_lossy(data);
1820                    let idx = Expr::constant(Constant::Str(Symbol::intern(&str)));
1821                    Ok(Some(Ty::mk_ref(ReErased, Ty::indexed(BaseTy::Str, idx), Mutability::Not)))
1822                } else {
1823                    Ok(None)
1824                }
1825            }
1826            _ => Ok(None),
1827        }
1828    }
1829
1830    fn check_uneval_const(
1831        &mut self,
1832        infcx: &InferCtxt<'_, 'genv, 'tcx>,
1833        constant: &ConstOperand<'tcx>,
1834        uneval: rustc_middle::mir::UnevaluatedConst<'tcx>,
1835        ty: rustc_middle::ty::Ty<'tcx>,
1836    ) -> QueryResult<Option<Ty>> {
1837        // 1. Use template for promoted constants, if applicable
1838        if let Some(promoted) = uneval.promoted
1839            && let Some(ty) = self.promoted.get(promoted)
1840        {
1841            return Ok(Some(ty.clone()));
1842        }
1843
1844        // 2. `Genv::constant_info` cannot handle constants with generics, so, we evaluate
1845        //    them here. These mostly come from inline consts, e.g., `const { 1 + 1 }`, because
1846        //    the generic_const_items feature is unstable.
1847        if !uneval.args.is_empty() {
1848            let tcx = self.genv.tcx();
1849            let param_env = tcx.param_env(self.checker_id.root_id());
1850            let typing_env = infcx.region_infcx.typing_env(param_env);
1851            if let Ok(val) = tcx.const_eval_resolve(typing_env, uneval, constant.span) {
1852                return self.check_const_val(val, ty);
1853            } else {
1854                return Ok(None);
1855            }
1856        }
1857
1858        // 3. Try to see if we have `consant_info` for it.
1859        if let rty::TyOrBase::Base(ctor) = self.default_refiner.refine_ty_or_base(&constant.ty)?
1860            && let rty::ConstantInfo::Interpreted(idx, _) = self.genv.constant_info(uneval.def)?
1861        {
1862            return Ok(Some(ctor.replace_bound_reft(&idx).to_ty()));
1863        }
1864
1865        Ok(None)
1866    }
1867
1868    fn check_scalar(
1869        &mut self,
1870        scalar: rustc_middle::mir::interpret::Scalar,
1871        ty: rustc_middle::ty::Ty<'tcx>,
1872    ) -> QueryResult<Option<Ty>> {
1873        use rustc_middle::mir::interpret::{GlobalAlloc, Scalar};
1874        match scalar {
1875            Scalar::Int(scalar_int) => Ok(self.check_scalar_int(scalar_int, ty)),
1876            Scalar::Ptr(ptr, _) => {
1877                let alloc_id = ptr.provenance.alloc_id();
1878                if let GlobalAlloc::Static(def_id) = self.genv.tcx().global_alloc(alloc_id)
1879                    && let rty::StaticInfo::Known(ty) = self.genv.static_info(def_id)?
1880                    && !self.genv.tcx().is_mutable_static(def_id)
1881                // TODO: mutable statics!
1882                {
1883                    Ok(Some(Ty::mk_ref(ReErased, ty, Mutability::Not)))
1884                } else {
1885                    Ok(None)
1886                }
1887            }
1888        }
1889    }
1890
1891    fn check_scalar_int(
1892        &mut self,
1893        scalar: rustc_middle::ty::ScalarInt,
1894        ty: rustc_middle::ty::Ty<'tcx>,
1895    ) -> Option<Ty> {
1896        use flux_rustc_bridge::const_eval::{scalar_to_int, scalar_to_uint};
1897        use rustc_middle::ty;
1898
1899        let tcx = self.genv.tcx();
1900
1901        match ty.kind() {
1902            ty::Int(int_ty) => {
1903                let idx = Expr::constant(Constant::from(scalar_to_int(tcx, scalar, *int_ty)));
1904                Some(Ty::indexed(BaseTy::Int(*int_ty), idx))
1905            }
1906            ty::Uint(uint_ty) => {
1907                let idx = Expr::constant(Constant::from(scalar_to_uint(tcx, scalar, *uint_ty)));
1908                Some(Ty::indexed(BaseTy::Uint(*uint_ty), idx))
1909            }
1910            ty::Float(float_ty) => Some(Ty::float(*float_ty)),
1911            ty::Char => {
1912                let idx = Expr::constant(Constant::Char(scalar.try_into().unwrap()));
1913                Some(Ty::indexed(BaseTy::Char, idx))
1914            }
1915            ty::Bool => {
1916                let idx = Expr::constant(Constant::Bool(scalar.try_to_bool().unwrap()));
1917                Some(Ty::indexed(BaseTy::Bool, idx))
1918            }
1919            // ty::Tuple(tys) if tys.is_empty() => Constant::Unit,
1920            _ => None,
1921        }
1922    }
1923
1924    fn check_ghost_statements_at(
1925        &mut self,
1926        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1927        env: &mut TypeEnv,
1928        point: Point,
1929        span: Span,
1930    ) -> Result {
1931        bug::track_span(span, || {
1932            for stmt in self.ghost_stmts().statements_at(point) {
1933                self.check_ghost_statement(infcx, env, stmt, span)
1934                    .with_span(span)?;
1935            }
1936            Ok(())
1937        })
1938    }
1939
1940    fn check_ghost_statement(
1941        &mut self,
1942        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1943        env: &mut TypeEnv,
1944        stmt: &GhostStatement,
1945        span: Span,
1946    ) -> InferResult {
1947        dbg::statement!("start", stmt, infcx, env, span, &self);
1948        match stmt {
1949            GhostStatement::Fold(place) => {
1950                env.fold(&mut infcx.at(span), place)?;
1951            }
1952            GhostStatement::Unfold(place) => {
1953                env.unfold(infcx, place, span)?;
1954            }
1955            GhostStatement::Unblock(place) => env.unblock(infcx, place),
1956            GhostStatement::PtrToRef(place) => {
1957                env.ptr_to_ref_at_place(&mut infcx.at(span), place)?;
1958            }
1959        }
1960        dbg::statement!("end", stmt, infcx, env, span, &self);
1961        Ok(())
1962    }
1963
1964    #[track_caller]
1965    fn marker_at_dominator(&self, bb: BasicBlock) -> &Marker {
1966        marker_at_dominator(self.body, &self.markers, bb)
1967    }
1968
1969    fn dominators(&self) -> &'ck Dominators<BasicBlock> {
1970        self.body.dominators()
1971    }
1972
1973    fn ghost_stmts(&self) -> &'ck GhostStatements {
1974        &self.inherited.ghost_stmts[&self.checker_id]
1975    }
1976
1977    fn refine_default<T: Refine>(&self, ty: &T) -> QueryResult<T::Output> {
1978        ty.refine(&self.default_refiner)
1979    }
1980
1981    fn refine_with_holes<T: Refine>(&self, ty: &T) -> QueryResult<<T as Refine>::Output> {
1982        ty.refine(&Refiner::with_holes(self.genv, self.checker_id.root_id().to_def_id())?)
1983    }
1984}
1985
1986fn instantiate_args_for_fun_call(
1987    genv: GlobalEnv,
1988    caller_id: DefId,
1989    callee_id: DefId,
1990    args: &ty::GenericArgs,
1991) -> QueryResult<Vec<rty::GenericArg>> {
1992    let params_in_clauses = collect_params_in_clauses(genv, callee_id);
1993
1994    let hole_refiner = Refiner::new_for_item(genv, caller_id, |bty| {
1995        let sort = bty.sort();
1996        let bty = bty.shift_in_escaping(1);
1997        let constr = if !sort.is_unit() {
1998            rty::SubsetTy::new(bty, Expr::nu(), Expr::hole(rty::HoleKind::Pred))
1999        } else {
2000            rty::SubsetTy::trivial(bty, Expr::nu())
2001        };
2002        Binder::bind_with_sort(constr, sort)
2003    })?;
2004    let default_refiner = Refiner::default_for_item(genv, caller_id)?;
2005
2006    let callee_generics = genv.generics_of(callee_id)?;
2007    args.iter()
2008        .enumerate()
2009        .map(|(idx, arg)| {
2010            let param = callee_generics.param_at(idx, genv)?;
2011            let refiner =
2012                if params_in_clauses.contains(&idx) { &default_refiner } else { &hole_refiner };
2013            refiner.refine_generic_arg(&param, arg)
2014        })
2015        .collect()
2016}
2017
2018fn instantiate_args_for_constructor(
2019    genv: GlobalEnv,
2020    caller_id: DefId,
2021    adt_id: DefId,
2022    args: &ty::GenericArgs,
2023) -> QueryResult<Vec<rty::GenericArg>> {
2024    let params_in_clauses = collect_params_in_clauses(genv, adt_id);
2025
2026    let adt_generics = genv.generics_of(adt_id)?;
2027    let hole_refiner = Refiner::with_holes(genv, caller_id)?;
2028    let default_refiner = Refiner::default_for_item(genv, caller_id)?;
2029    args.iter()
2030        .enumerate()
2031        .map(|(idx, arg)| {
2032            let param = adt_generics.param_at(idx, genv)?;
2033            let refiner =
2034                if params_in_clauses.contains(&idx) { &default_refiner } else { &hole_refiner };
2035            refiner.refine_generic_arg(&param, arg)
2036        })
2037        .collect()
2038}
2039
2040fn collect_params_in_clauses(genv: GlobalEnv, def_id: DefId) -> FxHashSet<usize> {
2041    let tcx = genv.tcx();
2042    struct Collector {
2043        params: FxHashSet<usize>,
2044    }
2045
2046    impl rustc_middle::ty::TypeVisitor<TyCtxt<'_>> for Collector {
2047        fn visit_ty(&mut self, t: rustc_middle::ty::Ty) {
2048            if let rustc_middle::ty::Param(param_ty) = t.kind() {
2049                self.params.insert(param_ty.index as usize);
2050            }
2051            t.super_visit_with(self);
2052        }
2053    }
2054    let mut vis = Collector { params: Default::default() };
2055
2056    let span = genv.tcx().def_span(def_id);
2057    for (clause, _) in all_predicates_of(tcx, def_id) {
2058        if let Some(trait_pred) = clause.as_trait_clause() {
2059            let trait_id = trait_pred.def_id();
2060            let ignore = [
2061                LangItem::MetaSized,
2062                LangItem::Sized,
2063                LangItem::Tuple,
2064                LangItem::Copy,
2065                LangItem::Destruct,
2066            ];
2067            if ignore
2068                .iter()
2069                .any(|lang_item| tcx.require_lang_item(*lang_item, span) == trait_id)
2070            {
2071                continue;
2072            }
2073
2074            if tcx.fn_trait_kind_from_def_id(trait_id).is_some() {
2075                continue;
2076            }
2077            if tcx.get_diagnostic_item(sym::Hash) == Some(trait_id) {
2078                continue;
2079            }
2080            if tcx.get_diagnostic_item(sym::Eq) == Some(trait_id) {
2081                continue;
2082            }
2083        }
2084        if let Some(proj_pred) = clause.as_projection_clause() {
2085            let assoc_id = proj_pred.item_def_id();
2086            if genv.is_fn_output(assoc_id) {
2087                continue;
2088            }
2089        }
2090        if let Some(outlives_pred) = clause.as_type_outlives_clause() {
2091            // We skip outlives bounds if they are not 'static. A 'static bound means the type
2092            // implements `Any` which makes it unsound to instantiate the argument with refinements.
2093            if outlives_pred.skip_binder().1 != tcx.lifetimes.re_static {
2094                continue;
2095            }
2096        }
2097        clause.visit_with(&mut vis);
2098    }
2099    vis.params
2100}
2101
2102fn all_predicates_of(
2103    tcx: TyCtxt<'_>,
2104    id: DefId,
2105) -> impl Iterator<Item = &(rustc_middle::ty::Clause<'_>, Span)> {
2106    let mut next_id = Some(id);
2107    iter::from_fn(move || {
2108        next_id.take().map(|id| {
2109            let preds = tcx.predicates_of(id);
2110            next_id = preds.parent;
2111            preds.predicates.iter()
2112        })
2113    })
2114    .flatten()
2115}
2116
2117struct SkipConstr;
2118
2119impl TypeFolder for SkipConstr {
2120    fn fold_ty(&mut self, ty: &rty::Ty) -> rty::Ty {
2121        if let rty::TyKind::Constr(_, inner_ty) = ty.kind() {
2122            inner_ty.fold_with(self)
2123        } else {
2124            ty.super_fold_with(self)
2125        }
2126    }
2127}
2128
2129fn is_indexed_mut_skipping_constr(ty: &Ty) -> bool {
2130    let ty = SkipConstr.fold_ty(ty);
2131    if let rty::Ref!(_, inner_ty, Mutability::Mut) = ty.kind()
2132        && let TyKind::Indexed(..) = inner_ty.kind()
2133    {
2134        true
2135    } else {
2136        false
2137    }
2138}
2139
2140/// HACK(nilehmann) This let us infer parameters under mutable references for the simple case
2141/// where the formal argument is of the form `&mut B[@n]`, e.g., the type of the first argument
2142/// to `RVec::get_mut` is `&mut RVec<T>[@n]`. We should remove this after we implement opening of
2143/// mutable references.
2144fn infer_under_mut_ref_hack(rcx: &mut InferCtxt, actuals: &[Ty], fn_sig: &PolyFnSig) -> Vec<Ty> {
2145    iter::zip(actuals, fn_sig.skip_binder_ref().inputs())
2146        .map(|(actual, formal)| {
2147            if let rty::Ref!(re, deref_ty, Mutability::Mut) = actual.kind()
2148                && is_indexed_mut_skipping_constr(formal)
2149            {
2150                rty::Ty::mk_ref(*re, rcx.unpack(deref_ty), Mutability::Mut)
2151            } else {
2152                actual.clone()
2153            }
2154        })
2155        .collect()
2156}
2157
2158impl Mode for ShapeMode {
2159    const NAME: &str = "shape";
2160
2161    fn enter_basic_block<'ck, 'genv, 'tcx>(
2162        ck: &mut Checker<'ck, 'genv, 'tcx, ShapeMode>,
2163        _infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
2164        bb: BasicBlock,
2165    ) -> TypeEnv<'ck> {
2166        ck.inherited.mode.bb_envs[&ck.checker_id][&bb].enter(&ck.body.local_decls)
2167    }
2168
2169    fn check_goto_join_point<'genv, 'tcx>(
2170        ck: &mut Checker<'_, 'genv, 'tcx, ShapeMode>,
2171        _: InferCtxt<'_, 'genv, 'tcx>,
2172        env: TypeEnv,
2173        span: Span,
2174        target: BasicBlock,
2175    ) -> Result<bool> {
2176        let bb_envs = &mut ck.inherited.mode.bb_envs;
2177        let target_bb_env = bb_envs.entry(ck.checker_id).or_default().get(&target);
2178        dbg::shape_goto_enter!(target, env, target_bb_env);
2179
2180        let modified = match bb_envs.entry(ck.checker_id).or_default().entry(target) {
2181            Entry::Occupied(mut entry) => entry.get_mut().join(env, span),
2182            Entry::Vacant(entry) => {
2183                let scope = marker_at_dominator(ck.body, &ck.markers, target)
2184                    .scope()
2185                    .unwrap_or_else(|| tracked_span_bug!());
2186                entry.insert(env.into_infer(scope));
2187                true
2188            }
2189        };
2190
2191        dbg::shape_goto_exit!(target, bb_envs[&ck.checker_id].get(&target));
2192        Ok(modified)
2193    }
2194
2195    fn clear(ck: &mut Checker<ShapeMode>, root: BasicBlock) {
2196        ck.visited.remove(root);
2197        for bb in ck.body.basic_blocks.indices() {
2198            if bb != root && ck.dominators().dominates(root, bb) {
2199                ck.inherited
2200                    .mode
2201                    .bb_envs
2202                    .entry(ck.checker_id)
2203                    .or_default()
2204                    .remove(&bb);
2205                ck.visited.remove(bb);
2206            }
2207        }
2208    }
2209}
2210
2211impl Mode for RefineMode {
2212    const NAME: &str = "refine";
2213
2214    fn enter_basic_block<'ck, 'genv, 'tcx>(
2215        ck: &mut Checker<'ck, 'genv, 'tcx, RefineMode>,
2216        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
2217        bb: BasicBlock,
2218    ) -> TypeEnv<'ck> {
2219        ck.inherited.mode.bb_envs[&ck.checker_id][&bb].enter(infcx, &ck.body.local_decls)
2220    }
2221
2222    fn check_goto_join_point(
2223        ck: &mut Checker<RefineMode>,
2224        mut infcx: InferCtxt,
2225        env: TypeEnv,
2226        terminator_span: Span,
2227        target: BasicBlock,
2228    ) -> Result<bool> {
2229        let bb_env = &ck.inherited.mode.bb_envs[&ck.checker_id][&target];
2230        tracked_span_dbg_assert_eq!(
2231            &ck.marker_at_dominator(target)
2232                .scope()
2233                .unwrap_or_else(|| tracked_span_bug!()),
2234            bb_env.scope()
2235        );
2236
2237        dbg::refine_goto!(target, infcx, env, bb_env);
2238
2239        env.check_goto(&mut infcx.at(terminator_span), bb_env, target)
2240            .with_span(terminator_span)?;
2241
2242        Ok(!ck.visited.contains(target))
2243    }
2244
2245    fn clear(_ck: &mut Checker<RefineMode>, _bb: BasicBlock) {
2246        bug!();
2247    }
2248}
2249
2250fn bool_int_cast(b: &Expr, int_ty: IntTy) -> Ty {
2251    let idx = Expr::ite(b, 1, 0);
2252    Ty::indexed(BaseTy::Int(int_ty), idx)
2253}
2254
2255/// Unlike [`char_uint_cast`] rust only allows `u8` to `char` casts, which are
2256/// non-lossy, so we can use indexed type directly.
2257fn uint_char_cast(idx: &Expr) -> Ty {
2258    let idx = Expr::cast(rty::Sort::Int, rty::Sort::Char, idx.clone());
2259    Ty::indexed(BaseTy::Char, idx)
2260}
2261
2262fn char_uint_cast(idx: &Expr, uint_ty: UintTy) -> Ty {
2263    let idx = Expr::cast(rty::Sort::Char, rty::Sort::Int, idx.clone());
2264    if uint_bit_width(uint_ty) >= 32 {
2265        // non-lossy cast: uint[cast(idx)]
2266        Ty::indexed(BaseTy::Uint(uint_ty), idx)
2267    } else {
2268        // lossy-cast: uint{v: cast(idx) <= max_value => v == cast(idx) }
2269        guarded_uint_ty(&idx, uint_ty)
2270    }
2271}
2272
2273fn bool_uint_cast(b: &Expr, uint_ty: UintTy) -> Ty {
2274    let idx = Expr::ite(b, 1, 0);
2275    Ty::indexed(BaseTy::Uint(uint_ty), idx)
2276}
2277
2278fn int_int_cast(idx: &Expr, int_ty1: IntTy, int_ty2: IntTy) -> Ty {
2279    if int_bit_width(int_ty1) <= int_bit_width(int_ty2) {
2280        Ty::indexed(BaseTy::Int(int_ty2), idx.clone())
2281    } else {
2282        Ty::int(int_ty2)
2283    }
2284}
2285
2286fn uint_int_cast(idx: &Expr, uint_ty: UintTy, int_ty: IntTy) -> Ty {
2287    if uint_bit_width(uint_ty) < int_bit_width(int_ty) {
2288        Ty::indexed(BaseTy::Int(int_ty), idx.clone())
2289    } else {
2290        Ty::int(int_ty)
2291    }
2292}
2293
2294fn guarded_uint_ty(idx: &Expr, uint_ty: UintTy) -> Ty {
2295    // uint_ty2{v: idx <= max_value => v == idx }
2296    let max_value = Expr::uint_max(uint_ty);
2297    let guard = Expr::le(idx.clone(), max_value);
2298    let eq = Expr::eq(Expr::nu(), idx.clone());
2299    Ty::exists_with_constr(BaseTy::Uint(uint_ty), Expr::implies(guard, eq))
2300}
2301
2302fn uint_uint_cast(idx: &Expr, uint_ty1: UintTy, uint_ty2: UintTy) -> Ty {
2303    if uint_bit_width(uint_ty1) <= uint_bit_width(uint_ty2) {
2304        Ty::indexed(BaseTy::Uint(uint_ty2), idx.clone())
2305    } else {
2306        guarded_uint_ty(idx, uint_ty2)
2307    }
2308}
2309
2310fn uint_bit_width(uint_ty: UintTy) -> u64 {
2311    uint_ty
2312        .bit_width()
2313        .unwrap_or(config::pointer_width().bits())
2314}
2315
2316fn int_bit_width(int_ty: IntTy) -> u64 {
2317    int_ty.bit_width().unwrap_or(config::pointer_width().bits())
2318}
2319
2320impl ShapeResult {
2321    fn into_bb_envs(
2322        self,
2323        infcx: &mut InferCtxtRoot,
2324        body: &Body,
2325    ) -> FxHashMap<CheckerId, FxHashMap<BasicBlock, BasicBlockEnv>> {
2326        self.0
2327            .into_iter()
2328            .map(|(checker_id, shapes)| {
2329                let bb_envs = shapes
2330                    .into_iter()
2331                    .map(|(bb, shape)| (bb, shape.into_bb_env(infcx, body)))
2332                    .collect();
2333                (checker_id, bb_envs)
2334            })
2335            .collect()
2336    }
2337}
2338
2339fn marker_at_dominator<'a>(
2340    body: &Body,
2341    markers: &'a IndexVec<BasicBlock, Option<Marker>>,
2342    bb: BasicBlock,
2343) -> &'a Marker {
2344    let dominator = body
2345        .dominators()
2346        .immediate_dominator(bb)
2347        .unwrap_or_else(|| tracked_span_bug!());
2348    markers[dominator]
2349        .as_ref()
2350        .unwrap_or_else(|| tracked_span_bug!())
2351}
2352
2353pub(crate) mod errors {
2354    use flux_errors::{E0999, ErrorGuaranteed};
2355    use flux_infer::infer::InferErr;
2356    use flux_middle::{global_env::GlobalEnv, queries::ErrCtxt};
2357    use rustc_errors::Diagnostic;
2358    use rustc_hir::def_id::LocalDefId;
2359    use rustc_span::Span;
2360
2361    use crate::fluent_generated as fluent;
2362
2363    #[derive(Debug)]
2364    pub struct CheckerError {
2365        kind: InferErr,
2366        span: Span,
2367    }
2368
2369    impl CheckerError {
2370        pub fn emit(self, genv: GlobalEnv, fn_def_id: LocalDefId) -> ErrorGuaranteed {
2371            let dcx = genv.sess().dcx().handle();
2372            match self.kind {
2373                InferErr::UnsolvedEvar(_) => {
2374                    let mut diag =
2375                        dcx.struct_span_err(self.span, fluent::refineck_param_inference_error);
2376                    diag.code(E0999);
2377                    diag.emit()
2378                }
2379                InferErr::Query(err) => {
2380                    let level = rustc_errors::Level::Error;
2381                    err.at(ErrCtxt::FnCheck(self.span, fn_def_id))
2382                        .into_diag(dcx, level)
2383                        .emit()
2384                }
2385            }
2386        }
2387    }
2388
2389    pub trait ResultExt<T> {
2390        fn with_span(self, span: Span) -> Result<T, CheckerError>;
2391    }
2392
2393    impl<T, E> ResultExt<T> for Result<T, E>
2394    where
2395        E: Into<InferErr>,
2396    {
2397        fn with_span(self, span: Span) -> Result<T, CheckerError> {
2398            self.map_err(|err| CheckerError { kind: err.into(), span })
2399        }
2400    }
2401}