flux_refineck/
checker.rs

1use std::{collections::hash_map::Entry, iter, vec};
2
3use flux_common::{
4    bug, dbg, dbg::SpanTrace, index::IndexVec, iter::IterExt, span_bug, tracked_span_bug,
5    tracked_span_dbg_assert_eq,
6};
7use flux_config::{self as config, InferOpts};
8use flux_infer::{
9    infer::{
10        ConstrReason, GlobalEnvExt as _, InferCtxt, InferCtxtRoot, InferResult, SubtypeReason,
11    },
12    projections::NormalizeExt as _,
13    refine_tree::{Marker, RefineCtxtTrace},
14};
15use flux_middle::{
16    global_env::GlobalEnv,
17    pretty::PrettyCx,
18    queries::{QueryResult, try_query},
19    query_bug,
20    rty::{
21        self, AdtDef, BaseTy, Binder, Bool, Clause, Constant, CoroutineObligPredicate, EarlyBinder,
22        Expr, FnOutput, FnSig, FnTraitPredicate, GenericArg, GenericArgsExt as _, Int, IntTy,
23        Mutability, Path, PolyFnSig, PtrKind, RefineArgs, RefineArgsExt,
24        Region::ReErased,
25        Ty, TyKind, Uint, UintTy, VariantIdx,
26        fold::{TypeFoldable, TypeFolder, TypeSuperFoldable},
27        refining::{Refine, Refiner},
28    },
29};
30use flux_rustc_bridge::{
31    self, ToRustc,
32    mir::{
33        self, AggregateKind, AssertKind, BasicBlock, Body, BodyRoot, BorrowKind, CastKind,
34        ConstOperand, Location, NonDivergingIntrinsic, Operand, Place, Rvalue, START_BLOCK,
35        Statement, StatementKind, Terminator, TerminatorKind, UnOp,
36    },
37    ty::{self, GenericArgsExt as _},
38};
39use itertools::{Itertools, izip};
40use rustc_data_structures::{graph::dominators::Dominators, unord::UnordMap};
41use rustc_hash::{FxHashMap, FxHashSet};
42use rustc_hir::{
43    LangItem,
44    def_id::{DefId, LocalDefId},
45};
46use rustc_index::{IndexSlice, bit_set::DenseBitSet};
47use rustc_infer::infer::TyCtxtInferExt;
48use rustc_middle::{
49    mir::{Promoted, SwitchTargets},
50    ty::{TyCtxt, TypeSuperVisitable as _, TypeVisitable as _, TypingMode},
51};
52use rustc_span::{
53    Span, Symbol,
54    sym::{self},
55};
56
57use self::errors::{CheckerError, ResultExt};
58use crate::{
59    ghost_statements::{CheckerId, GhostStatement, GhostStatements, Point},
60    primops,
61    queue::WorkQueue,
62    rty::Char,
63    type_env::{BasicBlockEnv, BasicBlockEnvShape, PtrToRefBound, TypeEnv, TypeEnvTrace},
64};
65
66type Result<T = ()> = std::result::Result<T, CheckerError>;
67
68pub(crate) struct Checker<'ck, 'genv, 'tcx, M> {
69    genv: GlobalEnv<'genv, 'tcx>,
70    /// [`CheckerId`] of the function-like item being checked.
71    checker_id: CheckerId,
72    inherited: Inherited<'ck, M>,
73    body: &'ck Body<'tcx>,
74    /// The type used for the `resume` argument if we are checking a generator.
75    resume_ty: Option<Ty>,
76    fn_sig: FnSig,
77    /// A marker to the node in the refinement tree at the end of the basic block after applying
78    /// the effects of the terminator.
79    markers: IndexVec<BasicBlock, Option<Marker>>,
80    visited: DenseBitSet<BasicBlock>,
81    queue: WorkQueue<'ck>,
82    default_refiner: Refiner<'genv, 'tcx>,
83    /// The templates for the promoted bodies of the current function
84    promoted: &'ck IndexSlice<Promoted, Ty>,
85}
86
87/// Fields shared by the top-level function and its nested closure/generators
88struct Inherited<'ck, M> {
89    /// [`Expr`]s used to instantiate the early bound refinement parameters of the top-level function
90    /// signature
91    ghost_stmts: &'ck UnordMap<CheckerId, GhostStatements>,
92    mode: &'ck mut M,
93
94    /// This map has the "templates" generated for the closures constructed (in [`Checker::check_rvalue_closure`]).
95    /// The [`PolyFnSig`] can have free variables (inside the scope of kvars), so we need to be
96    /// careful and only use it in the correct scope.
97    closures: &'ck mut UnordMap<DefId, PolyFnSig>,
98}
99
100#[derive(Debug)]
101struct ResolvedCall {
102    output: Ty,
103    /// The refine arguments given to the call
104    _early_args: Vec<Expr>,
105    /// The refine arguments given to the call
106    _late_args: Vec<Expr>,
107}
108
109impl<'ck, M: Mode> Inherited<'ck, M> {
110    fn new(
111        mode: &'ck mut M,
112        ghost_stmts: &'ck UnordMap<CheckerId, GhostStatements>,
113        closures: &'ck mut UnordMap<DefId, PolyFnSig>,
114    ) -> Self {
115        Self { ghost_stmts, mode, closures }
116    }
117
118    fn reborrow(&mut self) -> Inherited<'_, M> {
119        Inherited { ghost_stmts: self.ghost_stmts, mode: self.mode, closures: self.closures }
120    }
121}
122
123pub(crate) trait Mode: Sized {
124    const NAME: &str;
125
126    fn enter_basic_block<'ck, 'genv, 'tcx>(
127        ck: &mut Checker<'ck, 'genv, 'tcx, Self>,
128        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
129        bb: BasicBlock,
130    ) -> TypeEnv<'ck>;
131
132    fn check_goto_join_point<'genv, 'tcx>(
133        ck: &mut Checker<'_, 'genv, 'tcx, Self>,
134        infcx: InferCtxt<'_, 'genv, 'tcx>,
135        env: TypeEnv,
136        terminator_span: Span,
137        target: BasicBlock,
138    ) -> Result<bool>;
139
140    fn clear(ck: &mut Checker<Self>, bb: BasicBlock);
141}
142
143pub(crate) struct ShapeMode {
144    bb_envs: FxHashMap<CheckerId, FxHashMap<BasicBlock, BasicBlockEnvShape>>,
145}
146
147pub(crate) struct RefineMode {
148    bb_envs: FxHashMap<CheckerId, FxHashMap<BasicBlock, BasicBlockEnv>>,
149}
150
151/// The result of running the shape phase.
152pub(crate) struct ShapeResult(FxHashMap<CheckerId, FxHashMap<BasicBlock, BasicBlockEnvShape>>);
153
154/// A `Guard` describes extra "control" information that holds at the start of a successor basic block
155#[derive(Debug)]
156enum Guard {
157    /// No extra information holds, e.g., for a plain goto.
158    None,
159    /// A predicate that can be assumed, e.g., in the branches of an if-then-else.
160    Pred(Expr),
161    /// The corresponding place was found to be of a particular variant.
162    Match(Place, VariantIdx),
163}
164
165impl<'genv, 'tcx> Checker<'_, 'genv, 'tcx, ShapeMode> {
166    pub(crate) fn run_in_shape_mode<'ck>(
167        genv: GlobalEnv<'genv, 'tcx>,
168        local_id: LocalDefId,
169        ghost_stmts: &'ck UnordMap<CheckerId, GhostStatements>,
170        closures: &'ck mut UnordMap<DefId, PolyFnSig>,
171        opts: InferOpts,
172        poly_sig: &PolyFnSig,
173    ) -> Result<ShapeResult> {
174        let def_id = local_id.to_def_id();
175        dbg::shape_mode_span!(genv.tcx(), local_id).in_scope(|| {
176            let span = genv.tcx().def_span(local_id);
177            let mut mode = ShapeMode { bb_envs: FxHashMap::default() };
178
179            let body = genv.mir(local_id).with_span(span)?;
180
181            // In shape mode we don't care about kvars
182            let mut root_ctxt = try_query(|| {
183                genv.infcx_root(&body.infcx, opts)
184                    .with_dummy_kvars()
185                    .identity_for_item(def_id)?
186                    .build()
187            })
188            .with_span(span)?;
189
190            let inherited = Inherited::new(&mut mode, ghost_stmts, closures);
191
192            let infcx = root_ctxt.infcx(def_id, &body.infcx);
193            Checker::run(infcx, local_id, inherited, poly_sig.clone())?;
194
195            Ok(ShapeResult(mode.bb_envs))
196        })
197    }
198}
199
200impl<'genv, 'tcx> Checker<'_, 'genv, 'tcx, RefineMode> {
201    pub(crate) fn run_in_refine_mode<'ck>(
202        genv: GlobalEnv<'genv, 'tcx>,
203        local_id: LocalDefId,
204        ghost_stmts: &'ck UnordMap<CheckerId, GhostStatements>,
205        closures: &'ck mut UnordMap<DefId, PolyFnSig>,
206        bb_env_shapes: ShapeResult,
207        opts: InferOpts,
208        poly_sig: &PolyFnSig,
209    ) -> Result<InferCtxtRoot<'genv, 'tcx>> {
210        let def_id = local_id.to_def_id();
211        let span = genv.tcx().def_span(def_id);
212
213        let body = genv.mir(local_id).with_span(span)?;
214        let mut root_ctxt = try_query(|| {
215            genv.infcx_root(&body.infcx, opts)
216                .identity_for_item(def_id)?
217                .build()
218        })
219        .with_span(span)?;
220        let bb_envs = bb_env_shapes.into_bb_envs(&mut root_ctxt, &body.body);
221
222        dbg::refine_mode_span!(genv.tcx(), def_id, bb_envs).in_scope(|| {
223            // Check the body of the function def_id against its signature
224            let mut mode = RefineMode { bb_envs };
225            let inherited = Inherited::new(&mut mode, ghost_stmts, closures);
226            let infcx = root_ctxt.infcx(def_id, &body.infcx);
227            Checker::run(infcx, local_id, inherited, poly_sig.clone())?;
228
229            Ok(root_ctxt)
230        })
231    }
232}
233
234/// `SubFn` lets us reuse _most_ of the same code for `check_fn_subtyping` for both the case where
235/// we have an early-bound function signature (e.g., for a trait method???) and versions without,
236/// e.g. a plain closure against its FnTraitPredicate obligation.
237#[derive(Debug)]
238pub enum SubFn {
239    Poly(DefId, EarlyBinder<rty::PolyFnSig>, rty::GenericArgs),
240    Mono(rty::PolyFnSig),
241}
242
243impl SubFn {
244    pub fn as_ref(&self) -> &rty::PolyFnSig {
245        match self {
246            SubFn::Poly(_, sig, _) => sig.skip_binder_ref(),
247            SubFn::Mono(sig) => sig,
248        }
249    }
250}
251
252/// The function `check_fn_subtyping` does a function subtyping check between
253/// the sub-type (T_f) corresponding to the type of `def_id` @ `args` and the
254/// super-type (T_g) corresponding to the `oblig_sig`. This subtyping is handled
255/// as akin to the code
256///
257///   T_f := (S1,...,Sn) -> S
258///   T_g := (T1,...,Tn) -> T
259///   T_f <: T_g
260///
261///  fn g(x1:T1,...,xn:Tn) -> T {
262///      f(x1,...,xn)
263///  }
264fn check_fn_subtyping(
265    infcx: &mut InferCtxt,
266    sub_sig: SubFn,
267    super_sig: &rty::PolyFnSig,
268    span: Span,
269) -> InferResult {
270    let mut infcx = infcx.branch();
271    let mut infcx = infcx.at(span);
272    let tcx = infcx.genv.tcx();
273
274    let super_sig = super_sig
275        .replace_bound_vars(
276            |_| rty::ReErased,
277            |sort, _, kind| Expr::fvar(infcx.define_bound_reft_var(sort, kind)),
278        )
279        .deeply_normalize(&mut infcx)?;
280
281    // 1. Unpack `T_g` input types
282    let actuals = super_sig
283        .inputs()
284        .iter()
285        .map(|ty| infcx.unpack(ty))
286        .collect_vec();
287
288    let mut env = TypeEnv::empty();
289    let actuals = unfold_local_ptrs(&mut infcx, &mut env, sub_sig.as_ref(), &actuals)?;
290    let actuals = infer_under_mut_ref_hack(&mut infcx, &actuals[..], sub_sig.as_ref());
291
292    let output = infcx.ensure_resolved_evars(|infcx| {
293        // 2. Fresh names for `T_f` refine-params / Instantiate fn_def_sig and normalize it
294        // in subtyping_mono, skip next two steps...
295        let sub_sig = match sub_sig {
296            SubFn::Poly(def_id, early_sig, sub_args) => {
297                let refine_args = infcx.instantiate_refine_args(def_id, &sub_args)?;
298                early_sig.instantiate(tcx, &sub_args, &refine_args)
299            }
300            SubFn::Mono(sig) => sig,
301        };
302        // ... jump right here.
303        let sub_sig = sub_sig
304            .replace_bound_vars(
305                |_| rty::ReErased,
306                |sort, mode, _| infcx.fresh_infer_var(sort, mode),
307            )
308            .deeply_normalize(infcx)?;
309
310        // 3. INPUT subtyping (g-input <: f-input)
311        for requires in super_sig.requires() {
312            infcx.assume_pred(requires);
313        }
314        for (actual, formal) in iter::zip(actuals, sub_sig.inputs()) {
315            let reason = ConstrReason::Subtype(SubtypeReason::Input);
316            infcx.subtyping_with_env(&mut env, &actual, formal, reason)?;
317        }
318        // we check the requires AFTER the actual-formal subtyping as the above may unfold stuff in
319        // the actuals
320        for requires in sub_sig.requires() {
321            let reason = ConstrReason::Subtype(SubtypeReason::Requires);
322            infcx.check_pred(requires, reason);
323        }
324
325        Ok(sub_sig.output())
326    })?;
327
328    let output = infcx
329        .fully_resolve_evars(&output)
330        .replace_bound_refts_with(|sort, _, kind| {
331            Expr::fvar(infcx.define_bound_reft_var(sort, kind))
332        });
333
334    // 4. OUTPUT subtyping (f_out <: g_out)
335    infcx.ensure_resolved_evars(|infcx| {
336        let super_output = super_sig
337            .output()
338            .replace_bound_refts_with(|sort, mode, _| infcx.fresh_infer_var(sort, mode));
339        let reason = ConstrReason::Subtype(SubtypeReason::Output);
340        infcx.subtyping(&output.ret, &super_output.ret, reason)?;
341
342        // 6. Update state with Output "ensures" and check super ensures
343        env.assume_ensures(infcx, &output.ensures, span);
344        fold_local_ptrs(infcx, &mut env, span)?;
345        env.check_ensures(
346            infcx,
347            &super_output.ensures,
348            ConstrReason::Subtype(SubtypeReason::Ensures),
349        )
350    })
351}
352
353/// Trait subtyping check, which makes sure that the type for an impl method (def_id)
354/// is a subtype of the corresponding trait method.
355pub(crate) fn trait_impl_subtyping<'genv, 'tcx>(
356    genv: GlobalEnv<'genv, 'tcx>,
357    def_id: LocalDefId,
358    opts: InferOpts,
359    span: Span,
360) -> InferResult<Option<InferCtxtRoot<'genv, 'tcx>>> {
361    let tcx = genv.tcx();
362
363    // Skip the check if this is not an impl method
364    let Some((impl_trait_ref, trait_method_id)) = find_trait_item(genv, def_id)? else {
365        return Ok(None);
366    };
367    let impl_method_id = def_id.to_def_id();
368    // Skip the check if either the trait-method or the impl-method are marked as `trusted_impl`
369    if genv.has_trusted_impl(trait_method_id) || genv.has_trusted_impl(impl_method_id) {
370        return Ok(None);
371    }
372
373    let impl_id = tcx.impl_of_assoc(impl_method_id).unwrap();
374    let impl_method_args = GenericArg::identity_for_item(genv, impl_method_id)?;
375    let trait_method_args = impl_method_args.rebase_onto(&tcx, impl_id, &impl_trait_ref.args);
376    let trait_refine_args = RefineArgs::identity_for_item(genv, trait_method_id)?;
377
378    let rustc_infcx = genv
379        .tcx()
380        .infer_ctxt()
381        .with_next_trait_solver(true)
382        .build(TypingMode::non_body_analysis());
383
384    let mut root_ctxt = genv
385        .infcx_root(&rustc_infcx, opts)
386        .with_const_generics(impl_id)?
387        .with_refinement_generics(trait_method_id, &trait_method_args)?
388        .build()?;
389
390    let mut infcx = root_ctxt.infcx(impl_method_id, &rustc_infcx);
391
392    let trait_fn_sig =
393        genv.fn_sig(trait_method_id)?
394            .instantiate(tcx, &trait_method_args, &trait_refine_args);
395    let impl_sig = genv.fn_sig(impl_method_id)?;
396    let sub_sig = SubFn::Poly(impl_method_id, impl_sig, impl_method_args);
397
398    check_fn_subtyping(&mut infcx, sub_sig, &trait_fn_sig, span)?;
399    Ok(Some(root_ctxt))
400}
401
402fn find_trait_item(
403    genv: GlobalEnv<'_, '_>,
404    def_id: LocalDefId,
405) -> QueryResult<Option<(rty::TraitRef, DefId)>> {
406    let tcx = genv.tcx();
407    let def_id = def_id.to_def_id();
408    if let Some(impl_id) = tcx.impl_of_assoc(def_id)
409        && let Some(impl_trait_ref) = genv.impl_trait_ref(impl_id)?
410    {
411        let impl_trait_ref = impl_trait_ref.instantiate_identity();
412        let trait_item_id = tcx.associated_item(def_id).trait_item_def_id().unwrap();
413        return Ok(Some((impl_trait_ref, trait_item_id)));
414    }
415    Ok(None)
416}
417
418/// Temporarily (around a function call) convert an `&mut` to an `&strg` to allow for the call to be
419/// checked. This is done by unfolding the `&mut` into a local pointer at the call-site and then
420/// folding the pointer back into the `&mut` upon return.
421/// See also [`fold_local_ptrs`].
422///
423/// ```text
424///             unpack(T) = T'
425/// ---------------------------------------[local-unfold]
426/// Γ ; &mut T => Γ, l:[<: T] T' ; ptr(l)
427/// ```
428fn unfold_local_ptrs(
429    infcx: &mut InferCtxt,
430    env: &mut TypeEnv,
431    fn_sig: &PolyFnSig,
432    actuals: &[Ty],
433) -> InferResult<Vec<Ty>> {
434    // We *only* need to know whether each input is a &strg or not
435    let fn_sig = fn_sig.skip_binder_ref();
436    let mut tys = vec![];
437    for (actual, input) in izip!(actuals, fn_sig.inputs()) {
438        let actual = if let (
439            TyKind::Indexed(BaseTy::Ref(re, bound, Mutability::Mut), _),
440            TyKind::StrgRef(_, _, _),
441        ) = (actual.kind(), input.kind())
442        {
443            let loc = env.unfold_local_ptr(infcx, bound)?;
444            let path1 = Path::new(loc, rty::List::empty());
445            Ty::ptr(PtrKind::Mut(*re), path1)
446        } else {
447            actual.clone()
448        };
449        tys.push(actual);
450    }
451    Ok(tys)
452}
453
454/// Fold local pointers implements roughly a rule like the following (for all local pointers)
455/// that converts the local pointers created via [`unfold_local_ptrs`] back into `&mut`.
456///
457/// ```text
458///       T1 <: T2
459/// --------------------- [local-fold]
460/// Γ, l:[<: T2] T1 => Γ
461/// ```
462fn fold_local_ptrs(infcx: &mut InferCtxt, env: &mut TypeEnv, span: Span) -> InferResult {
463    let mut at = infcx.at(span);
464    env.fold_local_ptrs(&mut at)
465}
466
467fn promoted_fn_sig(ty: &Ty) -> PolyFnSig {
468    let safety = rustc_hir::Safety::Safe;
469    let abi = rustc_abi::ExternAbi::Rust;
470    let requires = rty::List::empty();
471    let inputs = rty::List::empty();
472    let output =
473        Binder::bind_with_vars(FnOutput::new(ty.clone(), rty::List::empty()), rty::List::empty());
474    let fn_sig = crate::rty::FnSig::new(safety, abi, requires, inputs, output, true, false);
475    PolyFnSig::bind_with_vars(fn_sig, crate::rty::List::empty())
476}
477
478impl<'ck, 'genv, 'tcx, M: Mode> Checker<'ck, 'genv, 'tcx, M> {
479    fn new(
480        genv: GlobalEnv<'genv, 'tcx>,
481        checker_id: CheckerId,
482        inherited: Inherited<'ck, M>,
483        body: &'ck Body<'tcx>,
484        fn_sig: FnSig,
485        promoted: &'ck IndexSlice<Promoted, Ty>,
486    ) -> QueryResult<Self> {
487        let root_id = checker_id.root_id();
488
489        let resume_ty = if let CheckerId::DefId(def_id) = checker_id
490            && genv.tcx().is_coroutine(def_id.to_def_id())
491        {
492            Some(fn_sig.inputs()[1].clone())
493        } else {
494            None
495        };
496
497        let bb_len = body.basic_blocks.len();
498        Ok(Self {
499            checker_id,
500            genv,
501            inherited,
502            body,
503            resume_ty,
504            visited: DenseBitSet::new_empty(bb_len),
505            fn_sig,
506            markers: IndexVec::from_fn_n(|_| None, bb_len),
507            queue: WorkQueue::empty(bb_len, &body.dominator_order_rank),
508            default_refiner: Refiner::default_for_item(genv, root_id.to_def_id())?,
509            promoted,
510        })
511    }
512
513    fn check_body(
514        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
515        checker_id: CheckerId,
516        inherited: Inherited<'ck, M>,
517        body: &'ck Body<'tcx>,
518        poly_sig: PolyFnSig,
519        promoted: &'ck IndexSlice<Promoted, Ty>,
520    ) -> Result {
521        let span = body.span();
522
523        let fn_sig = poly_sig
524            .replace_bound_vars(
525                |_| rty::ReErased,
526                |sort, _, kind| {
527                    let name = infcx.define_bound_reft_var(sort, kind);
528                    Expr::fvar(name)
529                },
530            )
531            .deeply_normalize(&mut infcx.at(span))
532            .with_span(span)?;
533        let mut env = TypeEnv::new(infcx, body, &fn_sig);
534
535        let mut ck = Checker::new(infcx.genv, checker_id, inherited, body, fn_sig, promoted)
536            .with_span(span)?;
537        ck.check_ghost_statements_at(infcx, &mut env, Point::FunEntry, span)?;
538
539        ck.check_goto(infcx.branch(), env, body.span(), START_BLOCK)?;
540
541        while let Some(bb) = ck.queue.pop() {
542            let visited = ck.visited.contains(bb);
543
544            if visited {
545                M::clear(&mut ck, bb);
546            }
547
548            let marker = ck.marker_at_dominator(bb);
549            let mut infcx = infcx.move_to(marker, visited);
550            let mut env = M::enter_basic_block(&mut ck, &mut infcx, bb);
551            env.unpack(&mut infcx);
552            ck.check_basic_block(infcx, env, bb)?;
553        }
554        Ok(())
555    }
556
557    /// Assign a template with fresh kvars to each promoted constant in `body_root`.
558    fn promoted_tys(
559        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
560        def_id: LocalDefId,
561        body_root: &BodyRoot<'tcx>,
562    ) -> QueryResult<IndexVec<Promoted, Ty>> {
563        let hole_refiner = Refiner::with_holes(infcx.genv, def_id.into())?;
564
565        body_root
566            .promoted
567            .iter()
568            .map(|body| {
569                Ok(body
570                    .return_ty()
571                    .refine(&hole_refiner)?
572                    .replace_holes(|binders, kind| infcx.fresh_infer_var_for_hole(binders, kind)))
573            })
574            .collect()
575    }
576
577    fn run(
578        mut infcx: InferCtxt<'_, 'genv, 'tcx>,
579        def_id: LocalDefId,
580        mut inherited: Inherited<'_, M>,
581        poly_sig: PolyFnSig,
582    ) -> Result {
583        let genv = infcx.genv;
584        let span = genv.tcx().def_span(def_id);
585        let body_root = genv.mir(def_id).with_span(span)?;
586
587        // 1. Generate templates for promoted consts
588        let promoted_tys = Self::promoted_tys(&mut infcx, def_id, &body_root).with_span(span)?;
589
590        // 2. Check the body of all promoted
591        for (promoted, ty) in promoted_tys.iter_enumerated() {
592            let body = &body_root.promoted[promoted];
593            let poly_sig = promoted_fn_sig(ty);
594            Checker::check_body(
595                &mut infcx,
596                CheckerId::Promoted(def_id, promoted),
597                inherited.reborrow(),
598                body,
599                poly_sig,
600                &promoted_tys,
601            )?;
602        }
603
604        // 3. Check the main body
605        Checker::check_body(
606            &mut infcx,
607            CheckerId::DefId(def_id),
608            inherited,
609            &body_root.body,
610            poly_sig,
611            &promoted_tys,
612        )
613    }
614
615    fn check_basic_block(
616        &mut self,
617        mut infcx: InferCtxt<'_, 'genv, 'tcx>,
618        mut env: TypeEnv,
619        bb: BasicBlock,
620    ) -> Result {
621        dbg::basic_block_start!(bb, infcx, env);
622
623        self.visited.insert(bb);
624        let data = &self.body.basic_blocks[bb];
625        let mut last_stmt_span = None;
626        let mut location = Location { block: bb, statement_index: 0 };
627        for stmt in &data.statements {
628            let span = stmt.source_info.span;
629            self.check_ghost_statements_at(
630                &mut infcx,
631                &mut env,
632                Point::BeforeLocation(location),
633                span,
634            )?;
635            bug::track_span(span, || {
636                dbg::statement!("start", stmt, &infcx, &env, span, &self);
637                self.check_statement(&mut infcx, &mut env, stmt)?;
638                dbg::statement!("end", stmt, &infcx, &env, span, &self);
639                Ok(())
640            })?;
641            if !stmt.is_nop() {
642                last_stmt_span = Some(span);
643            }
644            location = location.successor_within_block();
645        }
646
647        if let Some(terminator) = &data.terminator {
648            let span = terminator.source_info.span;
649            self.check_ghost_statements_at(
650                &mut infcx,
651                &mut env,
652                Point::BeforeLocation(location),
653                span,
654            )?;
655
656            bug::track_span(span, || {
657                dbg::terminator!("start", terminator, infcx, env);
658
659                let successors =
660                    self.check_terminator(&mut infcx, &mut env, terminator, last_stmt_span)?;
661                dbg::terminator!("end", terminator, infcx, env);
662
663                self.markers[bb] = Some(infcx.marker());
664                let term_span = last_stmt_span.unwrap_or(span);
665                self.check_successors(infcx, env, bb, term_span, successors)
666            })?;
667        }
668        Ok(())
669    }
670
671    fn check_assign_ty(
672        &mut self,
673        infcx: &mut InferCtxt,
674        env: &mut TypeEnv,
675        place: &Place,
676        ty: Ty,
677        span: Span,
678    ) -> InferResult {
679        let ty = infcx.hoister(true).hoist(&ty);
680        env.assign(&mut infcx.at(span), place, ty)
681    }
682
683    fn check_statement(
684        &mut self,
685        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
686        env: &mut TypeEnv,
687        stmt: &Statement<'tcx>,
688    ) -> Result {
689        let stmt_span = stmt.source_info.span;
690        match &stmt.kind {
691            StatementKind::Assign(place, rvalue) => {
692                let ty = self.check_rvalue(infcx, env, stmt_span, rvalue)?;
693                self.check_assign_ty(infcx, env, place, ty, stmt_span)
694                    .with_span(stmt_span)?;
695            }
696            StatementKind::SetDiscriminant { .. } => {
697                // TODO(nilehmann) double check here that the place is unfolded to
698                // the correct variant. This should be guaranteed by rustc
699            }
700            StatementKind::FakeRead(_) => {
701                // TODO(nilehmann) fake reads should be folding points
702            }
703            StatementKind::AscribeUserType(_, _) => {
704                // User ascriptions affect nll, but no refinement type checking.
705                // Maybe we can use this to associate refinement type to locals.
706            }
707            StatementKind::PlaceMention(_) => {
708                // Place mentions are a no-op used to detect uses of unsafe that would
709                // otherwise be optimized away.
710            }
711            StatementKind::Nop => {}
712            StatementKind::Intrinsic(NonDivergingIntrinsic::Assume(op)) => {
713                // Currently, we only have the `assume` intrinsic, which if we're to trust rustc should be a NOP.
714                // TODO: There may be a use-case to actually "assume" the bool index associated with the operand,
715                // i.e. to strengthen the `rcx` / `env` with the assumption that the bool-index is in fact `true`...
716                let _ = self
717                    .check_operand(infcx, env, stmt_span, op)
718                    .with_span(stmt_span)?;
719            }
720        }
721        Ok(())
722    }
723
724    fn is_exit_block(&self, bb: BasicBlock) -> bool {
725        let data = &self.body.basic_blocks[bb];
726        let is_no_op = data.statements.iter().all(Statement::is_nop);
727        let is_ret = match &data.terminator {
728            None => false,
729            Some(term) => term.is_return(),
730        };
731        is_no_op && is_ret
732    }
733
734    /// For `check_terminator`, the output `Vec<BasicBlock, Guard>` denotes,
735    /// - `BasicBlock` "successors" of the current terminator, and
736    /// - `Guard` are extra control information from, e.g. the `SwitchInt` (or `Assert`) you can assume when checking the corresponding successor.
737    fn check_terminator(
738        &mut self,
739        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
740        env: &mut TypeEnv,
741        terminator: &Terminator<'tcx>,
742        last_stmt_span: Option<Span>,
743    ) -> Result<Vec<(BasicBlock, Guard)>> {
744        let source_info = terminator.source_info;
745        let terminator_span = source_info.span;
746        match &terminator.kind {
747            TerminatorKind::Return => {
748                self.check_ret(infcx, env, last_stmt_span.unwrap_or(terminator_span))?;
749                Ok(vec![])
750            }
751            TerminatorKind::Unreachable => Ok(vec![]),
752            TerminatorKind::CoroutineDrop => Ok(vec![]),
753            TerminatorKind::Goto { target } => Ok(vec![(*target, Guard::None)]),
754            TerminatorKind::Yield { resume, resume_arg, .. } => {
755                if let Some(resume_ty) = self.resume_ty.clone() {
756                    self.check_assign_ty(infcx, env, resume_arg, resume_ty, terminator_span)
757                        .with_span(terminator_span)?;
758                } else {
759                    bug!("yield in non-generator function");
760                }
761                Ok(vec![(*resume, Guard::None)])
762            }
763            TerminatorKind::SwitchInt { discr, targets } => {
764                let discr_ty = self
765                    .check_operand(infcx, env, terminator_span, discr)
766                    .with_span(terminator_span)?;
767                if discr_ty.is_integral() || discr_ty.is_bool() || discr_ty.is_char() {
768                    Ok(Self::check_if(&discr_ty, targets))
769                } else {
770                    Ok(Self::check_match(infcx, env, &discr_ty, targets, terminator_span))
771                }
772            }
773            TerminatorKind::Call { kind, args, destination, target, .. } => {
774                let actuals = self
775                    .check_operands(infcx, env, terminator_span, args)
776                    .with_span(terminator_span)?;
777                let ret = match kind {
778                    mir::CallKind::FnDef { resolved_id, resolved_args, .. } => {
779                        let fn_sig = self.genv.fn_sig(*resolved_id).with_span(terminator_span)?;
780                        let generic_args = instantiate_args_for_fun_call(
781                            self.genv,
782                            self.checker_id.root_id().to_def_id(),
783                            *resolved_id,
784                            &resolved_args.lowered,
785                        )
786                        .with_span(terminator_span)?;
787                        self.check_call(
788                            infcx,
789                            env,
790                            terminator_span,
791                            Some(*resolved_id),
792                            fn_sig,
793                            &generic_args,
794                            &actuals,
795                        )?
796                        .output
797                    }
798                    mir::CallKind::FnPtr { operand, .. } => {
799                        let ty = self
800                            .check_operand(infcx, env, terminator_span, operand)
801                            .with_span(terminator_span)?;
802                        if let TyKind::Indexed(BaseTy::FnPtr(fn_sig), _) = infcx.unpack(&ty).kind()
803                        {
804                            self.check_call(
805                                infcx,
806                                env,
807                                terminator_span,
808                                None,
809                                EarlyBinder(fn_sig.clone()),
810                                &[],
811                                &actuals,
812                            )?
813                            .output
814                        } else {
815                            bug!("TODO: fnptr call {ty:?}")
816                        }
817                    }
818                };
819
820                let name = destination.name(&self.body.local_names);
821                let ret = infcx.unpack_at_name(name, &ret);
822                infcx.assume_invariants(&ret);
823
824                env.assign(&mut infcx.at(terminator_span), destination, ret)
825                    .with_span(terminator_span)?;
826
827                if let Some(target) = target {
828                    Ok(vec![(*target, Guard::None)])
829                } else {
830                    Ok(vec![])
831                }
832            }
833            TerminatorKind::Assert { cond, expected, target, msg } => {
834                Ok(vec![(
835                    *target,
836                    self.check_assert(infcx, env, terminator_span, cond, *expected, msg)
837                        .with_span(terminator_span)?,
838                )])
839            }
840            TerminatorKind::Drop { place, target, .. } => {
841                let _ = env.move_place(&mut infcx.at(terminator_span), place);
842                Ok(vec![(*target, Guard::None)])
843            }
844            TerminatorKind::FalseEdge { real_target, .. } => Ok(vec![(*real_target, Guard::None)]),
845            TerminatorKind::FalseUnwind { real_target, .. } => {
846                Ok(vec![(*real_target, Guard::None)])
847            }
848            TerminatorKind::UnwindResume => bug!("TODO: implement checking of cleanup code"),
849        }
850    }
851
852    fn check_ret(
853        &mut self,
854        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
855        env: &mut TypeEnv,
856        span: Span,
857    ) -> Result {
858        let obligations = infcx
859            .at(span)
860            .ensure_resolved_evars(|infcx| {
861                let ret_place_ty = env.lookup_place(infcx, Place::RETURN)?;
862                let output = self
863                    .fn_sig
864                    .output
865                    .replace_bound_refts_with(|sort, mode, _| infcx.fresh_infer_var(sort, mode));
866                let obligations =
867                    infcx.subtyping_with_env(env, &ret_place_ty, &output.ret, ConstrReason::Ret)?;
868
869                env.check_ensures(infcx, &output.ensures, ConstrReason::Ret)?;
870
871                Ok(obligations)
872            })
873            .with_span(span)?;
874
875        self.check_coroutine_obligations(infcx, obligations)
876    }
877
878    #[expect(clippy::too_many_arguments)]
879    fn check_call(
880        &mut self,
881        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
882        env: &mut TypeEnv,
883        span: Span,
884        callee_def_id: Option<DefId>,
885        fn_sig: EarlyBinder<PolyFnSig>,
886        generic_args: &[GenericArg],
887        actuals: &[Ty],
888    ) -> Result<ResolvedCall> {
889        let genv = self.genv;
890        let tcx = genv.tcx();
891
892        let actuals =
893            unfold_local_ptrs(infcx, env, fn_sig.skip_binder_ref(), actuals).with_span(span)?;
894        let actuals = infer_under_mut_ref_hack(infcx, &actuals, fn_sig.skip_binder_ref());
895        infcx.push_evar_scope();
896
897        // Replace holes in generic arguments with fresh inference variables
898        let generic_args = infcx.instantiate_generic_args(generic_args);
899
900        // Generate fresh inference variables for refinement arguments
901        let early_refine_args = match callee_def_id {
902            Some(callee_def_id) => {
903                infcx
904                    .instantiate_refine_args(callee_def_id, &generic_args)
905                    .with_span(span)?
906            }
907            None => rty::List::empty(),
908        };
909
910        let clauses = match callee_def_id {
911            Some(callee_def_id) => {
912                genv.predicates_of(callee_def_id)
913                    .with_span(span)?
914                    .predicates()
915                    .instantiate(tcx, &generic_args, &early_refine_args)
916            }
917            None => crate::rty::List::empty(),
918        };
919
920        let (clauses, fn_clauses) = Clause::split_off_fn_trait_clauses(self.genv, &clauses);
921        infcx
922            .at(span)
923            .check_non_closure_clauses(&clauses, ConstrReason::Call)
924            .with_span(span)?;
925
926        for fn_trait_pred in &fn_clauses {
927            self.check_fn_trait_clause(infcx, fn_trait_pred, span)?;
928        }
929
930        // Instantiate function signature and normalize it
931        let late_refine_args = vec![];
932        let fn_sig = fn_sig
933            .instantiate(tcx, &generic_args, &early_refine_args)
934            .replace_bound_vars(
935                |_| rty::ReErased,
936                |sort, mode, _| infcx.fresh_infer_var(sort, mode),
937            );
938
939        let fn_sig = fn_sig
940            .deeply_normalize(&mut infcx.at(span))
941            .with_span(span)?;
942
943        let mut at = infcx.at(span);
944
945        if M::NAME == "refine" {
946            let no_panic = self.fn_sig.no_panic();
947
948            if no_panic
949                && let Some(callee_def_id) = callee_def_id
950                && genv.def_kind(callee_def_id).is_fn_like()
951            {
952                at.check_pred(
953                    Expr::implies(
954                        if no_panic { Expr::tt() } else { Expr::ff() },
955                        if fn_sig.no_panic() { Expr::tt() } else { Expr::ff() },
956                    ),
957                    ConstrReason::NoPanic(callee_def_id),
958                );
959            }
960        }
961
962        // Check requires predicates
963        for requires in fn_sig.requires() {
964            at.check_pred(requires, ConstrReason::Call);
965        }
966
967        // Check arguments
968        for (actual, formal) in iter::zip(actuals, fn_sig.inputs()) {
969            at.subtyping_with_env(env, &actual, formal, ConstrReason::Call)
970                .with_span(span)?;
971        }
972
973        infcx.pop_evar_scope().with_span(span)?;
974        env.fully_resolve_evars(infcx);
975
976        let output = infcx
977            .fully_resolve_evars(&fn_sig.output)
978            .replace_bound_refts_with(|sort, _, kind| {
979                Expr::fvar(infcx.define_bound_reft_var(sort, kind))
980            });
981
982        env.assume_ensures(infcx, &output.ensures, span);
983        fold_local_ptrs(infcx, env, span).with_span(span)?;
984
985        Ok(ResolvedCall {
986            output: output.ret,
987            _early_args: early_refine_args
988                .into_iter()
989                .map(|arg| infcx.fully_resolve_evars(arg))
990                .collect(),
991            _late_args: late_refine_args
992                .into_iter()
993                .map(|arg| infcx.fully_resolve_evars(&arg))
994                .collect(),
995        })
996    }
997
998    fn check_coroutine_obligations(
999        &mut self,
1000        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1001        obligs: Vec<Binder<CoroutineObligPredicate>>,
1002    ) -> Result {
1003        for oblig in obligs {
1004            // FIXME(nilehmann) we shouldn't be skipping this binder
1005            let oblig = oblig.skip_binder();
1006
1007            #[expect(clippy::disallowed_methods, reason = "coroutines cannot be extern speced")]
1008            let def_id = oblig.def_id.expect_local();
1009            let span = self.genv.tcx().def_span(def_id);
1010            let body = self.genv.mir(def_id).with_span(span)?;
1011            Checker::run(
1012                infcx.change_item(def_id, &body.infcx),
1013                def_id,
1014                self.inherited.reborrow(),
1015                oblig.to_poly_fn_sig(),
1016            )?;
1017        }
1018        Ok(())
1019    }
1020
1021    fn find_self_ty_fn_sig(
1022        &self,
1023        self_ty: rustc_middle::ty::Ty<'tcx>,
1024        span: Span,
1025    ) -> Result<PolyFnSig> {
1026        let tcx = self.genv.tcx();
1027        let mut def_id = Some(self.checker_id.root_id().to_def_id());
1028        while let Some(did) = def_id {
1029            let generic_predicates = self
1030                .genv
1031                .predicates_of(did)
1032                .with_span(span)?
1033                .instantiate_identity();
1034            let predicates = generic_predicates.predicates;
1035
1036            for poly_fn_trait_pred in Clause::split_off_fn_trait_clauses(self.genv, &predicates).1 {
1037                if poly_fn_trait_pred.skip_binder_ref().self_ty.to_rustc(tcx) == self_ty {
1038                    return Ok(poly_fn_trait_pred.map(|fn_trait_pred| fn_trait_pred.fndef_sig()));
1039                }
1040            }
1041            // Continue to the parent if we didn't find a match
1042            def_id = generic_predicates.parent;
1043        }
1044
1045        span_bug!(
1046            span,
1047            "cannot find self_ty_fn_sig for {:?} with self_ty = {self_ty:?}",
1048            self.checker_id
1049        );
1050    }
1051
1052    fn check_fn_trait_clause(
1053        &mut self,
1054        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1055        poly_fn_trait_pred: &Binder<FnTraitPredicate>,
1056        span: Span,
1057    ) -> Result {
1058        let self_ty = poly_fn_trait_pred
1059            .skip_binder_ref()
1060            .self_ty
1061            .as_bty_skipping_existentials();
1062        let oblig_sig = poly_fn_trait_pred.map_ref(|fn_trait_pred| fn_trait_pred.fndef_sig());
1063        match self_ty {
1064            Some(BaseTy::Closure(def_id, _, _)) => {
1065                let Some(poly_sig) = self.inherited.closures.get(def_id).cloned() else {
1066                    span_bug!(span, "missing template for closure {def_id:?}");
1067                };
1068                check_fn_subtyping(infcx, SubFn::Mono(poly_sig.clone()), &oblig_sig, span)
1069                    .with_span(span)?;
1070            }
1071            Some(BaseTy::FnDef(def_id, args)) => {
1072                // Generates "function subtyping" obligations between the (super-type) `oblig_sig` in the `fn_trait_pred`
1073                // and the (sub-type) corresponding to the signature of `def_id + args`.
1074                // See `tests/neg/surface/fndef00.rs`
1075                let sub_sig = self.genv.fn_sig(def_id).with_span(span)?;
1076                check_fn_subtyping(
1077                    infcx,
1078                    SubFn::Poly(*def_id, sub_sig, args.clone()),
1079                    &oblig_sig,
1080                    span,
1081                )
1082                .with_span(span)?;
1083            }
1084            Some(BaseTy::FnPtr(sub_sig)) => {
1085                check_fn_subtyping(infcx, SubFn::Mono(sub_sig.clone()), &oblig_sig, span)
1086                    .with_span(span)?;
1087            }
1088
1089            // Some(self_ty) => {
1090            Some(self_ty @ BaseTy::Param(_)) => {
1091                // Step 1. Find matching clause and turn it into a FnSig
1092                let tcx = self.genv.tcx();
1093                let self_ty = self_ty.to_rustc(tcx);
1094                let sub_sig = self.find_self_ty_fn_sig(self_ty, span)?;
1095                // Step 2. Issue the subtyping
1096                check_fn_subtyping(infcx, SubFn::Mono(sub_sig), &oblig_sig, span)
1097                    .with_span(span)?;
1098            }
1099            _ => {}
1100        }
1101        Ok(())
1102    }
1103
1104    fn check_assert(
1105        &mut self,
1106        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1107        env: &mut TypeEnv,
1108        terminator_span: Span,
1109        cond: &Operand<'tcx>,
1110        expected: bool,
1111        msg: &AssertKind,
1112    ) -> InferResult<Guard> {
1113        let ty = self.check_operand(infcx, env, terminator_span, cond)?;
1114        let TyKind::Indexed(BaseTy::Bool, idx) = ty.kind() else {
1115            tracked_span_bug!("unexpected ty `{ty:?}`");
1116        };
1117        let pred = if expected { idx.clone() } else { idx.not() };
1118
1119        let msg = match msg {
1120            AssertKind::DivisionByZero => "possible division by zero",
1121            AssertKind::BoundsCheck => "possible out-of-bounds access",
1122            AssertKind::RemainderByZero => "possible remainder with a divisor of zero",
1123            AssertKind::Overflow(mir::BinOp::Div) => "possible division with overflow",
1124            AssertKind::Overflow(mir::BinOp::Rem) => "possible reminder with overflow",
1125            AssertKind::Overflow(_) => return Ok(Guard::Pred(pred)),
1126        };
1127        infcx
1128            .at(terminator_span)
1129            .check_pred(&pred, ConstrReason::Assert(msg));
1130        Ok(Guard::Pred(pred))
1131    }
1132
1133    /// Checks conditional branching as in a `match` statement. [`SwitchTargets`](https://doc.rust-lang.org/nightly/nightly-rustc/stable_mir/mir/struct.SwitchTargets.html) contains a list of branches - the exact bit value which is being compared and the block to jump to. Using the conditionals, each branch can be checked using the new control flow information.
1134    /// See <https://github.com/flux-rs/flux/pull/840#discussion_r1786543174>
1135    fn check_if(discr_ty: &Ty, targets: &SwitchTargets) -> Vec<(BasicBlock, Guard)> {
1136        let mk = |bits| {
1137            match discr_ty.kind() {
1138                TyKind::Indexed(BaseTy::Bool, idx) => {
1139                    if bits == 0 {
1140                        idx.not()
1141                    } else {
1142                        idx.clone()
1143                    }
1144                }
1145                TyKind::Indexed(bty @ (BaseTy::Int(_) | BaseTy::Uint(_) | BaseTy::Char), idx) => {
1146                    Expr::eq(idx.clone(), Expr::from_bits(bty, bits))
1147                }
1148                _ => tracked_span_bug!("unexpected discr_ty {:?}", discr_ty),
1149            }
1150        };
1151
1152        let mut successors = vec![];
1153
1154        for (bits, bb) in targets.iter() {
1155            successors.push((bb, Guard::Pred(mk(bits))));
1156        }
1157        let otherwise = Expr::and_from_iter(targets.iter().map(|(bits, _)| mk(bits).not()));
1158        successors.push((targets.otherwise(), Guard::Pred(otherwise)));
1159
1160        successors
1161    }
1162
1163    fn check_match(
1164        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1165        env: &mut TypeEnv,
1166        discr_ty: &Ty,
1167        targets: &SwitchTargets,
1168        span: Span,
1169    ) -> Vec<(BasicBlock, Guard)> {
1170        let (adt_def, place) = discr_ty.expect_discr();
1171        let idx = if let Ok(ty) = env.lookup_place(&mut infcx.at(span), place)
1172            && let TyKind::Indexed(_, idx) = ty.kind()
1173        {
1174            Some(idx.clone())
1175        } else {
1176            None
1177        };
1178
1179        let mut successors = vec![];
1180        let mut remaining: FxHashMap<u128, VariantIdx> = adt_def
1181            .discriminants()
1182            .map(|(idx, discr)| (discr, idx))
1183            .collect();
1184        for (bits, bb) in targets.iter() {
1185            let variant_idx = remaining
1186                .remove(&bits)
1187                .expect("value doesn't correspond to any variant");
1188            successors.push((bb, Guard::Match(place.clone(), variant_idx)));
1189        }
1190        let guard = if remaining.len() == 1 {
1191            // If there's only one variant left, we know for sure that this is the one, so can force an unfold
1192            let (_, variant_idx) = remaining
1193                .into_iter()
1194                .next()
1195                .unwrap_or_else(|| tracked_span_bug!());
1196            Guard::Match(place.clone(), variant_idx)
1197        } else if adt_def.sort_def().is_reflected()
1198            && let Some(idx) = idx
1199        {
1200            // If there's more than one variant left, we can only assume the `is_ctor` holds for one of them
1201            let mut cases = vec![];
1202            for (_, variant_idx) in remaining {
1203                let did = adt_def.did();
1204                cases.push(rty::Expr::is_ctor(did, variant_idx, idx.clone()));
1205            }
1206            Guard::Pred(Expr::or_from_iter(cases))
1207        } else {
1208            Guard::None
1209        };
1210        successors.push((targets.otherwise(), guard));
1211
1212        successors
1213    }
1214
1215    fn check_successors(
1216        &mut self,
1217        mut infcx: InferCtxt<'_, 'genv, 'tcx>,
1218        env: TypeEnv,
1219        from: BasicBlock,
1220        terminator_span: Span,
1221        successors: Vec<(BasicBlock, Guard)>,
1222    ) -> Result {
1223        for (target, guard) in successors {
1224            let mut infcx = infcx.branch();
1225            let mut env = env.clone();
1226            match guard {
1227                Guard::None => {}
1228                Guard::Pred(expr) => {
1229                    infcx.assume_pred(&expr);
1230                }
1231                Guard::Match(place, variant_idx) => {
1232                    env.downcast(&mut infcx.at(terminator_span), &place, variant_idx)
1233                        .with_span(terminator_span)?;
1234                }
1235            }
1236            self.check_ghost_statements_at(
1237                &mut infcx,
1238                &mut env,
1239                Point::Edge(from, target),
1240                terminator_span,
1241            )?;
1242            self.check_goto(infcx, env, terminator_span, target)?;
1243        }
1244        Ok(())
1245    }
1246
1247    fn check_goto(
1248        &mut self,
1249        mut infcx: InferCtxt<'_, 'genv, 'tcx>,
1250        mut env: TypeEnv,
1251        span: Span,
1252        target: BasicBlock,
1253    ) -> Result {
1254        if self.is_exit_block(target) {
1255            // We inline *exit basic blocks* (i.e., that just return) because this typically
1256            // gives us better a better error span.
1257            let mut location = Location { block: target, statement_index: 0 };
1258            for _ in &self.body.basic_blocks[target].statements {
1259                self.check_ghost_statements_at(
1260                    &mut infcx,
1261                    &mut env,
1262                    Point::BeforeLocation(location),
1263                    span,
1264                )?;
1265                location = location.successor_within_block();
1266            }
1267            self.check_ghost_statements_at(
1268                &mut infcx,
1269                &mut env,
1270                Point::BeforeLocation(location),
1271                span,
1272            )?;
1273            self.check_ret(&mut infcx, &mut env, span)
1274        } else if self.body.is_join_point(target) {
1275            if M::check_goto_join_point(self, infcx, env, span, target)? {
1276                self.queue.insert(target);
1277            }
1278            Ok(())
1279        } else {
1280            self.check_basic_block(infcx, env, target)
1281        }
1282    }
1283
1284    fn closure_template(
1285        &mut self,
1286        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1287        env: &mut TypeEnv,
1288        stmt_span: Span,
1289        args: &flux_rustc_bridge::ty::GenericArgs,
1290        operands: &[Operand<'tcx>],
1291    ) -> InferResult<(Vec<Ty>, PolyFnSig)> {
1292        let upvar_tys = self
1293            .check_operands(infcx, env, stmt_span, operands)?
1294            .into_iter()
1295            .map(|ty| {
1296                if let TyKind::Ptr(PtrKind::Mut(re), path) = ty.kind() {
1297                    env.ptr_to_ref(
1298                        &mut infcx.at(stmt_span),
1299                        ConstrReason::Other,
1300                        *re,
1301                        path,
1302                        PtrToRefBound::Infer,
1303                    )
1304                } else {
1305                    Ok(ty.clone())
1306                }
1307            })
1308            .try_collect_vec()?;
1309
1310        let closure_args = args.as_closure();
1311        let ty = closure_args.sig_as_fn_ptr_ty();
1312
1313        if let flux_rustc_bridge::ty::TyKind::FnPtr(poly_sig) = ty.kind() {
1314            let poly_sig = poly_sig.unpack_closure_sig();
1315            let poly_sig = self.refine_with_holes(&poly_sig)?;
1316            let poly_sig = poly_sig.hoist_input_binders();
1317            let poly_sig = poly_sig
1318                .replace_holes(|binders, kind| infcx.fresh_infer_var_for_hole(binders, kind));
1319
1320            Ok((upvar_tys, poly_sig))
1321        } else {
1322            bug!("check_rvalue: closure: expected fn_ptr ty, found {ty:?} in {args:?}");
1323        }
1324    }
1325
1326    fn check_closure_body(
1327        &mut self,
1328        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1329        did: &DefId,
1330        upvar_tys: &[Ty],
1331        args: &flux_rustc_bridge::ty::GenericArgs,
1332        poly_sig: &PolyFnSig,
1333    ) -> Result {
1334        let genv = self.genv;
1335        let tcx = genv.tcx();
1336        #[expect(clippy::disallowed_methods, reason = "closures cannot be extern speced")]
1337        let closure_id = did.expect_local();
1338        let span = tcx.def_span(closure_id);
1339        let body = genv.mir(closure_id).with_span(span)?;
1340        let no_panic = self.genv.no_panic(*did);
1341        let closure_sig = rty::to_closure_sig(tcx, closure_id, upvar_tys, args, poly_sig, no_panic);
1342        Checker::run(
1343            infcx.change_item(closure_id, &body.infcx),
1344            closure_id,
1345            self.inherited.reborrow(),
1346            closure_sig,
1347        )
1348    }
1349
1350    fn check_rvalue_closure(
1351        &mut self,
1352        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1353        env: &mut TypeEnv,
1354        stmt_span: Span,
1355        did: &DefId,
1356        args: &flux_rustc_bridge::ty::GenericArgs,
1357        operands: &[Operand<'tcx>],
1358    ) -> Result<Ty> {
1359        // (1) Create the closure template
1360        let (upvar_tys, poly_sig) = self
1361            .closure_template(infcx, env, stmt_span, args, operands)
1362            .with_span(stmt_span)?;
1363        // (2) Check the closure body against the template
1364        self.check_closure_body(infcx, did, &upvar_tys, args, &poly_sig)?;
1365        // (3) "Save" the closure type in the `closures` map
1366        self.inherited.closures.insert(*did, poly_sig);
1367        // (4) Return the closure type
1368        Ok(Ty::closure(*did, upvar_tys, args))
1369    }
1370
1371    fn check_rvalue(
1372        &mut self,
1373        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1374        env: &mut TypeEnv,
1375        stmt_span: Span,
1376        rvalue: &Rvalue<'tcx>,
1377    ) -> Result<Ty> {
1378        let genv = self.genv;
1379        match rvalue {
1380            Rvalue::Use(operand) => {
1381                self.check_operand(infcx, env, stmt_span, operand)
1382                    .with_span(stmt_span)
1383            }
1384            Rvalue::Repeat(operand, c) => {
1385                let ty = self
1386                    .check_operand(infcx, env, stmt_span, operand)
1387                    .with_span(stmt_span)?;
1388                Ok(Ty::array(ty, c.clone()))
1389            }
1390            Rvalue::Ref(r, BorrowKind::Mut { .. }, place) => {
1391                env.borrow(&mut infcx.at(stmt_span), *r, Mutability::Mut, place)
1392                    .with_span(stmt_span)
1393            }
1394            Rvalue::Ref(r, BorrowKind::Shared | BorrowKind::Fake(..), place) => {
1395                env.borrow(&mut infcx.at(stmt_span), *r, Mutability::Not, place)
1396                    .with_span(stmt_span)
1397            }
1398
1399            Rvalue::RawPtr(mir::RawPtrKind::FakeForPtrMetadata, place) => {
1400                // see tests/tests/neg/surface/slice02.rs for what happens without unfolding here.
1401                env.unfold(infcx, place, stmt_span).with_span(stmt_span)?;
1402                let ty = env
1403                    .lookup_place(&mut infcx.at(stmt_span), place)
1404                    .with_span(stmt_span)?;
1405                let ty = BaseTy::RawPtrMetadata(ty).to_ty();
1406                Ok(ty)
1407            }
1408            Rvalue::RawPtr(kind, place) => {
1409                // ignore any refinements on the type stored at place
1410                let ty = &env.lookup_rust_ty(genv, place).with_span(stmt_span)?;
1411                let ty = self.refine_default(ty).with_span(stmt_span)?;
1412                let ty = BaseTy::RawPtr(ty, kind.to_mutbl_lossy()).to_ty();
1413                Ok(ty)
1414            }
1415            Rvalue::Cast(kind, op, to) => {
1416                let from = self
1417                    .check_operand(infcx, env, stmt_span, op)
1418                    .with_span(stmt_span)?;
1419                self.check_cast(infcx, env, stmt_span, *kind, &from, to)
1420                    .with_span(stmt_span)
1421            }
1422            Rvalue::BinaryOp(bin_op, op1, op2) => {
1423                self.check_binary_op(infcx, env, stmt_span, *bin_op, op1, op2)
1424                    .with_span(stmt_span)
1425            }
1426            Rvalue::NullaryOp(null_op, ty) => Ok(self.check_nullary_op(*null_op, ty)),
1427            Rvalue::UnaryOp(UnOp::PtrMetadata, Operand::Copy(place))
1428            | Rvalue::UnaryOp(UnOp::PtrMetadata, Operand::Move(place)) => {
1429                self.check_raw_ptr_metadata(infcx, env, stmt_span, place)
1430            }
1431            Rvalue::UnaryOp(un_op, op) => {
1432                self.check_unary_op(infcx, env, stmt_span, *un_op, op)
1433                    .with_span(stmt_span)
1434            }
1435            Rvalue::Discriminant(place) => {
1436                let ty = env
1437                    .lookup_place(&mut infcx.at(stmt_span), place)
1438                    .with_span(stmt_span)?;
1439                // HACK(nilehmann, mut-ref-unfolding) place should be unfolded here.
1440                let (adt_def, ..) = ty
1441                    .as_bty_skipping_existentials()
1442                    .unwrap_or_else(|| tracked_span_bug!())
1443                    .expect_adt();
1444                Ok(Ty::discr(adt_def.clone(), place.clone()))
1445            }
1446            Rvalue::Aggregate(
1447                AggregateKind::Adt(def_id, variant_idx, args, _, field_idx),
1448                operands,
1449            ) => {
1450                let actuals = self
1451                    .check_operands(infcx, env, stmt_span, operands)
1452                    .with_span(stmt_span)?;
1453                let sig = genv
1454                    .variant_sig(*def_id, *variant_idx)
1455                    .with_span(stmt_span)?
1456                    .ok_or_query_err(*def_id)
1457                    .with_span(stmt_span)?
1458                    .to_poly_fn_sig(*field_idx);
1459
1460                let args = instantiate_args_for_constructor(
1461                    genv,
1462                    self.checker_id.root_id().to_def_id(),
1463                    *def_id,
1464                    args,
1465                )
1466                .with_span(stmt_span)?;
1467                self.check_call(infcx, env, stmt_span, Some(*def_id), sig, &args, &actuals)
1468                    .map(|resolved_call| resolved_call.output)
1469            }
1470            Rvalue::Aggregate(AggregateKind::Array(arr_ty), operands) => {
1471                let args = self
1472                    .check_operands(infcx, env, stmt_span, operands)
1473                    .with_span(stmt_span)?;
1474                let arr_ty = self.refine_with_holes(arr_ty).with_span(stmt_span)?;
1475                self.check_mk_array(infcx, env, stmt_span, &args, arr_ty)
1476                    .with_span(stmt_span)
1477            }
1478            Rvalue::Aggregate(AggregateKind::Tuple, args) => {
1479                let tys = self
1480                    .check_operands(infcx, env, stmt_span, args)
1481                    .with_span(stmt_span)?;
1482                Ok(Ty::tuple(tys))
1483            }
1484            Rvalue::Aggregate(AggregateKind::Closure(did, args), operands) => {
1485                self.check_rvalue_closure(infcx, env, stmt_span, did, args, operands)
1486            }
1487            Rvalue::Aggregate(AggregateKind::Coroutine(did, args), ops) => {
1488                let coroutine_args = args.as_coroutine();
1489                let resume_ty = self
1490                    .refine_default(coroutine_args.resume_ty())
1491                    .with_span(stmt_span)?;
1492                let upvar_tys = self
1493                    .check_operands(infcx, env, stmt_span, ops)
1494                    .with_span(stmt_span)?;
1495                Ok(Ty::coroutine(*did, resume_ty, upvar_tys.into(), args.clone()))
1496            }
1497            Rvalue::ShallowInitBox(operand, _) => {
1498                self.check_operand(infcx, env, stmt_span, operand)
1499                    .with_span(stmt_span)?;
1500                Ty::mk_box_with_default_alloc(self.genv, Ty::uninit()).with_span(stmt_span)
1501            }
1502        }
1503    }
1504
1505    fn check_raw_ptr_metadata(
1506        &mut self,
1507        infcx: &mut InferCtxt,
1508        env: &mut TypeEnv,
1509        stmt_span: Span,
1510        place: &Place,
1511    ) -> Result<Ty> {
1512        let ty = env
1513            .lookup_place(&mut infcx.at(stmt_span), place)
1514            .with_span(stmt_span)?;
1515        let ty = match ty.kind() {
1516            TyKind::Indexed(BaseTy::RawPtrMetadata(ty), _)
1517            | TyKind::Indexed(BaseTy::Ref(_, ty, _), _) => ty,
1518            _ => tracked_span_bug!("check_metadata: bug! unexpected type `{ty:?}`"),
1519        };
1520        match ty.kind() {
1521            TyKind::Indexed(BaseTy::Array(_, len), _) => {
1522                let idx = Expr::from_const(self.genv.tcx(), len);
1523                Ok(Ty::indexed(BaseTy::Uint(UintTy::Usize), idx))
1524            }
1525            TyKind::Indexed(BaseTy::Slice(_), len) => {
1526                Ok(Ty::indexed(BaseTy::Uint(UintTy::Usize), len.clone()))
1527            }
1528            _ => Ok(Ty::unit()),
1529        }
1530    }
1531
1532    fn check_binary_op(
1533        &mut self,
1534        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1535        env: &mut TypeEnv,
1536        stmt_span: Span,
1537        bin_op: mir::BinOp,
1538        op1: &Operand<'tcx>,
1539        op2: &Operand<'tcx>,
1540    ) -> InferResult<Ty> {
1541        let ty1 = self.check_operand(infcx, env, stmt_span, op1)?;
1542        let ty2 = self.check_operand(infcx, env, stmt_span, op2)?;
1543
1544        match (ty1.kind(), ty2.kind()) {
1545            (TyKind::Indexed(bty1, idx1), TyKind::Indexed(bty2, idx2)) => {
1546                let rule =
1547                    primops::match_bin_op(bin_op, bty1, idx1, bty2, idx2, infcx.check_overflow);
1548                if let Some(pre) = rule.precondition {
1549                    infcx.at(stmt_span).check_pred(pre.pred, pre.reason);
1550                }
1551
1552                Ok(rule.output_type)
1553            }
1554            _ => tracked_span_bug!("incompatible types: `{ty1:?}` `{ty2:?}`"),
1555        }
1556    }
1557
1558    fn check_nullary_op(&self, null_op: mir::NullOp, _ty: &ty::Ty) -> Ty {
1559        match null_op {
1560            mir::NullOp::SizeOf | mir::NullOp::AlignOf => {
1561                // We could try to get the layout of type to index this with the actual value, but
1562                // this enough for now. Revisit if we ever need the precision.
1563                Ty::uint(UintTy::Usize)
1564            }
1565        }
1566    }
1567
1568    fn check_unary_op(
1569        &mut self,
1570        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1571        env: &mut TypeEnv,
1572        stmt_span: Span,
1573        un_op: mir::UnOp,
1574        op: &Operand<'tcx>,
1575    ) -> InferResult<Ty> {
1576        let ty = self.check_operand(infcx, env, stmt_span, op)?;
1577        match ty.kind() {
1578            TyKind::Indexed(bty, idx) => {
1579                let rule = primops::match_un_op(un_op, bty, idx, infcx.check_overflow);
1580                if let Some(pre) = rule.precondition {
1581                    infcx.at(stmt_span).check_pred(pre.pred, pre.reason);
1582                }
1583                Ok(rule.output_type)
1584            }
1585            _ => tracked_span_bug!("invalid type for unary operator `{un_op:?}` `{ty:?}`"),
1586        }
1587    }
1588
1589    fn check_mk_array(
1590        &mut self,
1591        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1592        env: &mut TypeEnv,
1593        stmt_span: Span,
1594        args: &[Ty],
1595        arr_ty: Ty,
1596    ) -> InferResult<Ty> {
1597        let arr_ty = infcx.ensure_resolved_evars(|infcx| {
1598            let arr_ty =
1599                arr_ty.replace_holes(|binders, kind| infcx.fresh_infer_var_for_hole(binders, kind));
1600
1601            let (arr_ty, pred) = arr_ty.unconstr();
1602            let mut at = infcx.at(stmt_span);
1603            at.check_pred(&pred, ConstrReason::Other);
1604            for ty in args {
1605                at.subtyping_with_env(env, ty, &arr_ty, ConstrReason::Other)?;
1606            }
1607            Ok(arr_ty)
1608        })?;
1609        let arr_ty = infcx.fully_resolve_evars(&arr_ty);
1610
1611        Ok(Ty::array(arr_ty, rty::Const::from_usize(self.genv.tcx(), args.len())))
1612    }
1613
1614    fn check_cast(
1615        &self,
1616        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1617        env: &mut TypeEnv,
1618        stmt_span: Span,
1619        kind: CastKind,
1620        from: &Ty,
1621        to: &ty::Ty,
1622    ) -> InferResult<Ty> {
1623        use ty::TyKind as RustTy;
1624        let ty = match kind {
1625            CastKind::PointerExposeProvenance => {
1626                match to.kind() {
1627                    RustTy::Int(int_ty) => Ty::int(*int_ty),
1628                    RustTy::Uint(uint_ty) => Ty::uint(*uint_ty),
1629                    _ => tracked_span_bug!("unsupported PointerExposeProvenance cast"),
1630                }
1631            }
1632            CastKind::IntToInt => {
1633                match (from.kind(), to.kind()) {
1634                    (Bool!(idx), RustTy::Int(int_ty)) => bool_int_cast(idx, *int_ty),
1635                    (Bool!(idx), RustTy::Uint(uint_ty)) => bool_uint_cast(idx, *uint_ty),
1636                    (Int!(int_ty1, idx), RustTy::Int(int_ty2)) => {
1637                        int_int_cast(idx, *int_ty1, *int_ty2)
1638                    }
1639                    (Uint!(uint_ty1, idx), RustTy::Uint(uint_ty2)) => {
1640                        uint_uint_cast(idx, *uint_ty1, *uint_ty2)
1641                    }
1642                    (Uint!(uint_ty, idx), RustTy::Int(int_ty)) => {
1643                        uint_int_cast(idx, *uint_ty, *int_ty)
1644                    }
1645                    (Int!(_, _), RustTy::Uint(uint_ty)) => Ty::uint(*uint_ty),
1646                    (TyKind::Discr(adt_def, _), RustTy::Int(int_ty)) => {
1647                        Self::discr_to_int_cast(adt_def, BaseTy::Int(*int_ty))
1648                    }
1649                    (TyKind::Discr(adt_def, _place), RustTy::Uint(uint_ty)) => {
1650                        Self::discr_to_int_cast(adt_def, BaseTy::Uint(*uint_ty))
1651                    }
1652                    (Char!(idx), RustTy::Uint(uint_ty)) => char_uint_cast(idx, *uint_ty),
1653                    (Uint!(_, idx), RustTy::Char) => uint_char_cast(idx),
1654                    _ => {
1655                        tracked_span_bug!("invalid int to int cast {from:?} --> {to:?}")
1656                    }
1657                }
1658            }
1659            CastKind::PointerCoercion(mir::PointerCast::Unsize) => {
1660                self.check_unsize_cast(infcx, env, stmt_span, from, to)?
1661            }
1662            CastKind::FloatToInt
1663            | CastKind::IntToFloat
1664            | CastKind::PtrToPtr
1665            | CastKind::PointerCoercion(mir::PointerCast::MutToConstPointer)
1666            | CastKind::PointerCoercion(mir::PointerCast::ClosureFnPointer)
1667            | CastKind::PointerWithExposedProvenance => self.refine_default(to)?,
1668            CastKind::PointerCoercion(mir::PointerCast::ReifyFnPointer) => {
1669                let to = self.refine_default(to)?;
1670                if let TyKind::Indexed(BaseTy::FnDef(def_id, args), _) = from.kind()
1671                    && let TyKind::Indexed(BaseTy::FnPtr(super_sig), _) = to.kind()
1672                {
1673                    let current_did = infcx.def_id;
1674                    let sub_sig =
1675                        SubFn::Poly(current_did, infcx.genv.fn_sig(*def_id)?, args.clone());
1676                    // TODO:CLOSURE:2 TODO(RJ) dicey maneuver? assumes that sig_b is unrefined?
1677                    check_fn_subtyping(infcx, sub_sig, super_sig, stmt_span)?;
1678                    to
1679                } else {
1680                    tracked_span_bug!("invalid cast from `{from:?}` to `{to:?}`")
1681                }
1682            }
1683        };
1684        Ok(ty)
1685    }
1686
1687    fn discr_to_int_cast(adt_def: &AdtDef, bty: BaseTy) -> Ty {
1688        // TODO: This could be a giant disjunction, maybe better (if less precise) to use the interval?
1689        let vals = adt_def
1690            .discriminants()
1691            .map(|(_, idx)| Expr::eq(Expr::nu(), Expr::from_bits(&bty, idx)))
1692            .collect_vec();
1693        Ty::exists_with_constr(bty, Expr::or_from_iter(vals))
1694    }
1695
1696    fn check_unsize_cast(
1697        &self,
1698        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1699        env: &mut TypeEnv,
1700        span: Span,
1701        src: &Ty,
1702        dst: &ty::Ty,
1703    ) -> InferResult<Ty> {
1704        // Convert `ptr` to `&mut`
1705        let src = if let TyKind::Ptr(PtrKind::Mut(re), path) = src.kind() {
1706            env.ptr_to_ref(
1707                &mut infcx.at(span),
1708                ConstrReason::Other,
1709                *re,
1710                path,
1711                PtrToRefBound::Identity,
1712            )?
1713        } else {
1714            src.clone()
1715        };
1716
1717        if let ty::TyKind::Ref(_, deref_ty, _) = dst.kind()
1718            && let ty::TyKind::Dynamic(..) = deref_ty.kind()
1719        {
1720            return Ok(self.refine_default(dst)?);
1721        }
1722
1723        // `&mut [T; n] -> &mut [T]` or `&[T; n] -> &[T]`
1724        if let TyKind::Indexed(BaseTy::Ref(_, deref_ty, _), _) = src.kind()
1725            && let TyKind::Indexed(BaseTy::Array(arr_ty, arr_len), _) = deref_ty.kind()
1726            && let ty::TyKind::Ref(re, _, mutbl) = dst.kind()
1727        {
1728            let idx = Expr::from_const(self.genv.tcx(), arr_len);
1729            Ok(Ty::mk_ref(*re, Ty::indexed(BaseTy::Slice(arr_ty.clone()), idx), *mutbl))
1730
1731        // `Box<[T; n]> -> Box<[T]>`
1732        } else if let TyKind::Indexed(BaseTy::Adt(adt_def, args), _) = src.kind()
1733            && adt_def.is_box()
1734            && let (deref_ty, alloc_ty) = args.box_args()
1735            && let TyKind::Indexed(BaseTy::Array(arr_ty, arr_len), _) = deref_ty.kind()
1736        {
1737            let idx = Expr::from_const(self.genv.tcx(), arr_len);
1738            Ok(Ty::mk_box(
1739                self.genv,
1740                Ty::indexed(BaseTy::Slice(arr_ty.clone()), idx),
1741                alloc_ty.clone(),
1742            )?)
1743        } else {
1744            Err(query_bug!("unsupported unsize cast from `{src:?}` to `{dst:?}`"))?
1745        }
1746    }
1747
1748    fn check_operands(
1749        &mut self,
1750        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1751        env: &mut TypeEnv,
1752        span: Span,
1753        operands: &[Operand<'tcx>],
1754    ) -> InferResult<Vec<Ty>> {
1755        operands
1756            .iter()
1757            .map(|op| self.check_operand(infcx, env, span, op))
1758            .try_collect()
1759    }
1760
1761    fn check_operand(
1762        &mut self,
1763        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1764        env: &mut TypeEnv,
1765        span: Span,
1766        operand: &Operand<'tcx>,
1767    ) -> InferResult<Ty> {
1768        let ty = match operand {
1769            Operand::Copy(p) => env.lookup_place(&mut infcx.at(span), p)?,
1770            Operand::Move(p) => env.move_place(&mut infcx.at(span), p)?,
1771            Operand::Constant(c) => self.check_constant(infcx, c)?,
1772        };
1773        Ok(infcx.hoister(true).hoist(&ty))
1774    }
1775
1776    fn check_constant(
1777        &mut self,
1778        infcx: &InferCtxt<'_, 'genv, 'tcx>,
1779        constant: &ConstOperand<'tcx>,
1780    ) -> QueryResult<Ty> {
1781        use rustc_middle::mir::Const;
1782        match constant.const_ {
1783            Const::Ty(ty, cst) => self.check_ty_const(constant, cst, ty)?,
1784            Const::Val(val, ty) => self.check_const_val(val, ty),
1785            Const::Unevaluated(uneval, ty) => {
1786                self.check_uneval_const(infcx, constant, uneval, ty)?
1787            }
1788        }
1789        .map_or_else(|| self.refine_default(&constant.ty), Ok)
1790    }
1791
1792    fn check_ty_const(
1793        &mut self,
1794        constant: &ConstOperand<'tcx>,
1795        cst: rustc_middle::ty::Const<'tcx>,
1796        ty: rustc_middle::ty::Ty<'tcx>,
1797    ) -> QueryResult<Option<Ty>> {
1798        use rustc_middle::ty::ConstKind;
1799        match cst.kind() {
1800            ConstKind::Param(param) => {
1801                let idx = Expr::const_generic(param);
1802                let ctor = self
1803                    .default_refiner
1804                    .refine_ty_or_base(&constant.ty)?
1805                    .expect_base();
1806                Ok(Some(ctor.replace_bound_reft(&idx).to_ty()))
1807            }
1808            ConstKind::Value(val_tree) => {
1809                let val = self.genv.tcx().valtree_to_const_val(val_tree);
1810                Ok(self.check_const_val(val, ty))
1811            }
1812            _ => Ok(None),
1813        }
1814    }
1815
1816    fn check_const_val(
1817        &mut self,
1818        val: rustc_middle::mir::ConstValue,
1819        ty: rustc_middle::ty::Ty<'tcx>,
1820    ) -> Option<Ty> {
1821        use rustc_middle::{mir::ConstValue, ty};
1822        match val {
1823            ConstValue::Scalar(scalar) => self.check_scalar(scalar, ty),
1824            ConstValue::ZeroSized if ty.is_unit() => Some(Ty::unit()),
1825            ConstValue::Slice { .. } => {
1826                if let ty::Ref(_, ref_ty, Mutability::Not) = ty.kind()
1827                    && ref_ty.is_str()
1828                    && let Some(data) = val.try_get_slice_bytes_for_diagnostics(self.genv.tcx())
1829                {
1830                    let str = String::from_utf8_lossy(data);
1831                    let idx = Expr::constant(Constant::Str(Symbol::intern(&str)));
1832                    Some(Ty::mk_ref(ReErased, Ty::indexed(BaseTy::Str, idx), Mutability::Not))
1833                } else {
1834                    None
1835                }
1836            }
1837            _ => None,
1838        }
1839    }
1840
1841    fn check_uneval_const(
1842        &mut self,
1843        infcx: &InferCtxt<'_, 'genv, 'tcx>,
1844        constant: &ConstOperand<'tcx>,
1845        uneval: rustc_middle::mir::UnevaluatedConst<'tcx>,
1846        ty: rustc_middle::ty::Ty<'tcx>,
1847    ) -> QueryResult<Option<Ty>> {
1848        // 1. Use template for promoted constants, if applicable
1849        if let Some(promoted) = uneval.promoted
1850            && let Some(ty) = self.promoted.get(promoted)
1851        {
1852            return Ok(Some(ty.clone()));
1853        }
1854
1855        // 2. `Genv::constant_info` cannot handle constants with generics, so, we evaluate
1856        //    them here. These mostly come from inline consts, e.g., `const { 1 + 1 }`, because
1857        //    the generic_const_items feature is unstable.
1858        if !uneval.args.is_empty() {
1859            let tcx = self.genv.tcx();
1860            let param_env = tcx.param_env(self.checker_id.root_id());
1861            let typing_env = infcx.region_infcx.typing_env(param_env);
1862            if let Ok(val) = tcx.const_eval_resolve(typing_env, uneval, constant.span) {
1863                return Ok(self.check_const_val(val, ty));
1864            } else {
1865                return Ok(None);
1866            }
1867        }
1868
1869        // 3. Try to see if we have `consant_info` for it.
1870        if let rty::TyOrBase::Base(ctor) = self.default_refiner.refine_ty_or_base(&constant.ty)?
1871            && let rty::ConstantInfo::Interpreted(idx, _) = self.genv.constant_info(uneval.def)?
1872        {
1873            return Ok(Some(ctor.replace_bound_reft(&idx).to_ty()));
1874        }
1875
1876        Ok(None)
1877    }
1878
1879    fn check_scalar(
1880        &mut self,
1881        scalar: rustc_middle::mir::interpret::Scalar,
1882        ty: rustc_middle::ty::Ty<'tcx>,
1883    ) -> Option<Ty> {
1884        use rustc_middle::mir::interpret::Scalar;
1885        match scalar {
1886            Scalar::Int(scalar_int) => self.check_scalar_int(scalar_int, ty),
1887            Scalar::Ptr(..) => None,
1888        }
1889    }
1890
1891    fn check_scalar_int(
1892        &mut self,
1893        scalar: rustc_middle::ty::ScalarInt,
1894        ty: rustc_middle::ty::Ty<'tcx>,
1895    ) -> Option<Ty> {
1896        use flux_rustc_bridge::const_eval::{scalar_to_int, scalar_to_uint};
1897        use rustc_middle::ty;
1898
1899        let tcx = self.genv.tcx();
1900
1901        match ty.kind() {
1902            ty::Int(int_ty) => {
1903                let idx = Expr::constant(Constant::from(scalar_to_int(tcx, scalar, *int_ty)));
1904                Some(Ty::indexed(BaseTy::Int(*int_ty), idx))
1905            }
1906            ty::Uint(uint_ty) => {
1907                let idx = Expr::constant(Constant::from(scalar_to_uint(tcx, scalar, *uint_ty)));
1908                Some(Ty::indexed(BaseTy::Uint(*uint_ty), idx))
1909            }
1910            ty::Float(float_ty) => Some(Ty::float(*float_ty)),
1911            ty::Char => {
1912                let idx = Expr::constant(Constant::Char(scalar.try_into().unwrap()));
1913                Some(Ty::indexed(BaseTy::Char, idx))
1914            }
1915            ty::Bool => {
1916                let idx = Expr::constant(Constant::Bool(scalar.try_to_bool().unwrap()));
1917                Some(Ty::indexed(BaseTy::Bool, idx))
1918            }
1919            // ty::Tuple(tys) if tys.is_empty() => Constant::Unit,
1920            _ => None,
1921        }
1922    }
1923
1924    fn check_ghost_statements_at(
1925        &mut self,
1926        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1927        env: &mut TypeEnv,
1928        point: Point,
1929        span: Span,
1930    ) -> Result {
1931        bug::track_span(span, || {
1932            for stmt in self.ghost_stmts().statements_at(point) {
1933                self.check_ghost_statement(infcx, env, stmt, span)
1934                    .with_span(span)?;
1935            }
1936            Ok(())
1937        })
1938    }
1939
1940    fn check_ghost_statement(
1941        &mut self,
1942        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
1943        env: &mut TypeEnv,
1944        stmt: &GhostStatement,
1945        span: Span,
1946    ) -> InferResult {
1947        dbg::statement!("start", stmt, infcx, env, span, &self);
1948        match stmt {
1949            GhostStatement::Fold(place) => {
1950                env.fold(&mut infcx.at(span), place)?;
1951            }
1952            GhostStatement::Unfold(place) => {
1953                env.unfold(infcx, place, span)?;
1954            }
1955            GhostStatement::Unblock(place) => env.unblock(infcx, place),
1956            GhostStatement::PtrToRef(place) => {
1957                env.ptr_to_ref_at_place(&mut infcx.at(span), place)?;
1958            }
1959        }
1960        dbg::statement!("end", stmt, infcx, env, span, &self);
1961        Ok(())
1962    }
1963
1964    #[track_caller]
1965    fn marker_at_dominator(&self, bb: BasicBlock) -> &Marker {
1966        marker_at_dominator(self.body, &self.markers, bb)
1967    }
1968
1969    fn dominators(&self) -> &'ck Dominators<BasicBlock> {
1970        self.body.dominators()
1971    }
1972
1973    fn ghost_stmts(&self) -> &'ck GhostStatements {
1974        &self.inherited.ghost_stmts[&self.checker_id]
1975    }
1976
1977    fn refine_default<T: Refine>(&self, ty: &T) -> QueryResult<T::Output> {
1978        ty.refine(&self.default_refiner)
1979    }
1980
1981    fn refine_with_holes<T: Refine>(&self, ty: &T) -> QueryResult<<T as Refine>::Output> {
1982        ty.refine(&Refiner::with_holes(self.genv, self.checker_id.root_id().to_def_id())?)
1983    }
1984}
1985
1986fn instantiate_args_for_fun_call(
1987    genv: GlobalEnv,
1988    caller_id: DefId,
1989    callee_id: DefId,
1990    args: &ty::GenericArgs,
1991) -> QueryResult<Vec<rty::GenericArg>> {
1992    let params_in_clauses = collect_params_in_clauses(genv, callee_id);
1993
1994    let hole_refiner = Refiner::new_for_item(genv, caller_id, |bty| {
1995        let sort = bty.sort();
1996        let bty = bty.shift_in_escaping(1);
1997        let constr = if !sort.is_unit() {
1998            rty::SubsetTy::new(bty, Expr::nu(), Expr::hole(rty::HoleKind::Pred))
1999        } else {
2000            rty::SubsetTy::trivial(bty, Expr::nu())
2001        };
2002        Binder::bind_with_sort(constr, sort)
2003    })?;
2004    let default_refiner = Refiner::default_for_item(genv, caller_id)?;
2005
2006    let callee_generics = genv.generics_of(callee_id)?;
2007    args.iter()
2008        .enumerate()
2009        .map(|(idx, arg)| {
2010            let param = callee_generics.param_at(idx, genv)?;
2011            let refiner =
2012                if params_in_clauses.contains(&idx) { &default_refiner } else { &hole_refiner };
2013            refiner.refine_generic_arg(&param, arg)
2014        })
2015        .collect()
2016}
2017
2018fn instantiate_args_for_constructor(
2019    genv: GlobalEnv,
2020    caller_id: DefId,
2021    adt_id: DefId,
2022    args: &ty::GenericArgs,
2023) -> QueryResult<Vec<rty::GenericArg>> {
2024    let params_in_clauses = collect_params_in_clauses(genv, adt_id);
2025
2026    let adt_generics = genv.generics_of(adt_id)?;
2027    let hole_refiner = Refiner::with_holes(genv, caller_id)?;
2028    let default_refiner = Refiner::default_for_item(genv, caller_id)?;
2029    args.iter()
2030        .enumerate()
2031        .map(|(idx, arg)| {
2032            let param = adt_generics.param_at(idx, genv)?;
2033            let refiner =
2034                if params_in_clauses.contains(&idx) { &default_refiner } else { &hole_refiner };
2035            refiner.refine_generic_arg(&param, arg)
2036        })
2037        .collect()
2038}
2039
2040fn collect_params_in_clauses(genv: GlobalEnv, def_id: DefId) -> FxHashSet<usize> {
2041    let tcx = genv.tcx();
2042    struct Collector {
2043        params: FxHashSet<usize>,
2044    }
2045
2046    impl rustc_middle::ty::TypeVisitor<TyCtxt<'_>> for Collector {
2047        fn visit_ty(&mut self, t: rustc_middle::ty::Ty) {
2048            if let rustc_middle::ty::Param(param_ty) = t.kind() {
2049                self.params.insert(param_ty.index as usize);
2050            }
2051            t.super_visit_with(self);
2052        }
2053    }
2054    let mut vis = Collector { params: Default::default() };
2055
2056    let span = genv.tcx().def_span(def_id);
2057    for (clause, _) in all_predicates_of(tcx, def_id) {
2058        if let Some(trait_pred) = clause.as_trait_clause() {
2059            let trait_id = trait_pred.def_id();
2060            let ignore = [
2061                LangItem::MetaSized,
2062                LangItem::Sized,
2063                LangItem::Tuple,
2064                LangItem::Copy,
2065                LangItem::Destruct,
2066            ];
2067            if ignore
2068                .iter()
2069                .any(|lang_item| tcx.require_lang_item(*lang_item, span) == trait_id)
2070            {
2071                continue;
2072            }
2073
2074            if tcx.fn_trait_kind_from_def_id(trait_id).is_some() {
2075                continue;
2076            }
2077            if tcx.get_diagnostic_item(sym::Hash) == Some(trait_id) {
2078                continue;
2079            }
2080            if tcx.get_diagnostic_item(sym::Eq) == Some(trait_id) {
2081                continue;
2082            }
2083        }
2084        if let Some(proj_pred) = clause.as_projection_clause() {
2085            let assoc_id = proj_pred.item_def_id();
2086            if genv.is_fn_output(assoc_id) {
2087                continue;
2088            }
2089        }
2090        if let Some(outlives_pred) = clause.as_type_outlives_clause() {
2091            // We skip outlives bounds if they are not 'static. A 'static bound means the type
2092            // implements `Any` which makes it unsound to instantiate the argument with refinements.
2093            if outlives_pred.skip_binder().1 != tcx.lifetimes.re_static {
2094                continue;
2095            }
2096        }
2097        clause.visit_with(&mut vis);
2098    }
2099    vis.params
2100}
2101
2102fn all_predicates_of(
2103    tcx: TyCtxt<'_>,
2104    id: DefId,
2105) -> impl Iterator<Item = &(rustc_middle::ty::Clause<'_>, Span)> {
2106    let mut next_id = Some(id);
2107    iter::from_fn(move || {
2108        next_id.take().map(|id| {
2109            let preds = tcx.predicates_of(id);
2110            next_id = preds.parent;
2111            preds.predicates.iter()
2112        })
2113    })
2114    .flatten()
2115}
2116
2117struct SkipConstr;
2118
2119impl TypeFolder for SkipConstr {
2120    fn fold_ty(&mut self, ty: &rty::Ty) -> rty::Ty {
2121        if let rty::TyKind::Constr(_, inner_ty) = ty.kind() {
2122            inner_ty.fold_with(self)
2123        } else {
2124            ty.super_fold_with(self)
2125        }
2126    }
2127}
2128
2129fn is_indexed_mut_skipping_constr(ty: &Ty) -> bool {
2130    let ty = SkipConstr.fold_ty(ty);
2131    if let rty::Ref!(_, inner_ty, Mutability::Mut) = ty.kind()
2132        && let TyKind::Indexed(..) = inner_ty.kind()
2133    {
2134        true
2135    } else {
2136        false
2137    }
2138}
2139
2140/// HACK(nilehmann) This let us infer parameters under mutable references for the simple case
2141/// where the formal argument is of the form `&mut B[@n]`, e.g., the type of the first argument
2142/// to `RVec::get_mut` is `&mut RVec<T>[@n]`. We should remove this after we implement opening of
2143/// mutable references.
2144fn infer_under_mut_ref_hack(rcx: &mut InferCtxt, actuals: &[Ty], fn_sig: &PolyFnSig) -> Vec<Ty> {
2145    iter::zip(actuals, fn_sig.skip_binder_ref().inputs())
2146        .map(|(actual, formal)| {
2147            if let rty::Ref!(re, deref_ty, Mutability::Mut) = actual.kind()
2148                && is_indexed_mut_skipping_constr(formal)
2149            {
2150                rty::Ty::mk_ref(*re, rcx.unpack(deref_ty), Mutability::Mut)
2151            } else {
2152                actual.clone()
2153            }
2154        })
2155        .collect()
2156}
2157
2158impl Mode for ShapeMode {
2159    const NAME: &str = "shape";
2160
2161    fn enter_basic_block<'ck, 'genv, 'tcx>(
2162        ck: &mut Checker<'ck, 'genv, 'tcx, ShapeMode>,
2163        _infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
2164        bb: BasicBlock,
2165    ) -> TypeEnv<'ck> {
2166        ck.inherited.mode.bb_envs[&ck.checker_id][&bb].enter(&ck.body.local_decls)
2167    }
2168
2169    fn check_goto_join_point<'genv, 'tcx>(
2170        ck: &mut Checker<'_, 'genv, 'tcx, ShapeMode>,
2171        _: InferCtxt<'_, 'genv, 'tcx>,
2172        env: TypeEnv,
2173        span: Span,
2174        target: BasicBlock,
2175    ) -> Result<bool> {
2176        let bb_envs = &mut ck.inherited.mode.bb_envs;
2177        let target_bb_env = bb_envs.entry(ck.checker_id).or_default().get(&target);
2178        dbg::shape_goto_enter!(target, env, target_bb_env);
2179
2180        let modified = match bb_envs.entry(ck.checker_id).or_default().entry(target) {
2181            Entry::Occupied(mut entry) => entry.get_mut().join(env, span),
2182            Entry::Vacant(entry) => {
2183                let scope = marker_at_dominator(ck.body, &ck.markers, target)
2184                    .scope()
2185                    .unwrap_or_else(|| tracked_span_bug!());
2186                entry.insert(env.into_infer(scope));
2187                true
2188            }
2189        };
2190
2191        dbg::shape_goto_exit!(target, bb_envs[&ck.checker_id].get(&target));
2192        Ok(modified)
2193    }
2194
2195    fn clear(ck: &mut Checker<ShapeMode>, root: BasicBlock) {
2196        ck.visited.remove(root);
2197        for bb in ck.body.basic_blocks.indices() {
2198            if bb != root && ck.dominators().dominates(root, bb) {
2199                ck.inherited
2200                    .mode
2201                    .bb_envs
2202                    .entry(ck.checker_id)
2203                    .or_default()
2204                    .remove(&bb);
2205                ck.visited.remove(bb);
2206            }
2207        }
2208    }
2209}
2210
2211impl Mode for RefineMode {
2212    const NAME: &str = "refine";
2213
2214    fn enter_basic_block<'ck, 'genv, 'tcx>(
2215        ck: &mut Checker<'ck, 'genv, 'tcx, RefineMode>,
2216        infcx: &mut InferCtxt<'_, 'genv, 'tcx>,
2217        bb: BasicBlock,
2218    ) -> TypeEnv<'ck> {
2219        ck.inherited.mode.bb_envs[&ck.checker_id][&bb].enter(infcx, &ck.body.local_decls)
2220    }
2221
2222    fn check_goto_join_point(
2223        ck: &mut Checker<RefineMode>,
2224        mut infcx: InferCtxt,
2225        env: TypeEnv,
2226        terminator_span: Span,
2227        target: BasicBlock,
2228    ) -> Result<bool> {
2229        let bb_env = &ck.inherited.mode.bb_envs[&ck.checker_id][&target];
2230        tracked_span_dbg_assert_eq!(
2231            &ck.marker_at_dominator(target)
2232                .scope()
2233                .unwrap_or_else(|| tracked_span_bug!()),
2234            bb_env.scope()
2235        );
2236
2237        dbg::refine_goto!(target, infcx, env, bb_env);
2238
2239        env.check_goto(&mut infcx.at(terminator_span), bb_env, target)
2240            .with_span(terminator_span)?;
2241
2242        Ok(!ck.visited.contains(target))
2243    }
2244
2245    fn clear(_ck: &mut Checker<RefineMode>, _bb: BasicBlock) {
2246        bug!();
2247    }
2248}
2249
2250fn bool_int_cast(b: &Expr, int_ty: IntTy) -> Ty {
2251    let idx = Expr::ite(b, 1, 0);
2252    Ty::indexed(BaseTy::Int(int_ty), idx)
2253}
2254
2255/// Unlike [`char_uint_cast`] rust only allows `u8` to `char` casts, which are
2256/// non-lossy, so we can use indexed type directly.
2257fn uint_char_cast(idx: &Expr) -> Ty {
2258    let idx = Expr::cast(rty::Sort::Int, rty::Sort::Char, idx.clone());
2259    Ty::indexed(BaseTy::Char, idx)
2260}
2261
2262fn char_uint_cast(idx: &Expr, uint_ty: UintTy) -> Ty {
2263    let idx = Expr::cast(rty::Sort::Char, rty::Sort::Int, idx.clone());
2264    if uint_bit_width(uint_ty) >= 32 {
2265        // non-lossy cast: uint[cast(idx)]
2266        Ty::indexed(BaseTy::Uint(uint_ty), idx)
2267    } else {
2268        // lossy-cast: uint{v: cast(idx) <= max_value => v == cast(idx) }
2269        guarded_uint_ty(&idx, uint_ty)
2270    }
2271}
2272
2273fn bool_uint_cast(b: &Expr, uint_ty: UintTy) -> Ty {
2274    let idx = Expr::ite(b, 1, 0);
2275    Ty::indexed(BaseTy::Uint(uint_ty), idx)
2276}
2277
2278fn int_int_cast(idx: &Expr, int_ty1: IntTy, int_ty2: IntTy) -> Ty {
2279    if int_bit_width(int_ty1) <= int_bit_width(int_ty2) {
2280        Ty::indexed(BaseTy::Int(int_ty2), idx.clone())
2281    } else {
2282        Ty::int(int_ty2)
2283    }
2284}
2285
2286fn uint_int_cast(idx: &Expr, uint_ty: UintTy, int_ty: IntTy) -> Ty {
2287    if uint_bit_width(uint_ty) < int_bit_width(int_ty) {
2288        Ty::indexed(BaseTy::Int(int_ty), idx.clone())
2289    } else {
2290        Ty::int(int_ty)
2291    }
2292}
2293
2294fn guarded_uint_ty(idx: &Expr, uint_ty: UintTy) -> Ty {
2295    // uint_ty2{v: idx <= max_value => v == idx }
2296    let max_value = Expr::uint_max(uint_ty);
2297    let guard = Expr::le(idx.clone(), max_value);
2298    let eq = Expr::eq(Expr::nu(), idx.clone());
2299    Ty::exists_with_constr(BaseTy::Uint(uint_ty), Expr::implies(guard, eq))
2300}
2301
2302fn uint_uint_cast(idx: &Expr, uint_ty1: UintTy, uint_ty2: UintTy) -> Ty {
2303    if uint_bit_width(uint_ty1) <= uint_bit_width(uint_ty2) {
2304        Ty::indexed(BaseTy::Uint(uint_ty2), idx.clone())
2305    } else {
2306        guarded_uint_ty(idx, uint_ty2)
2307    }
2308}
2309
2310fn uint_bit_width(uint_ty: UintTy) -> u64 {
2311    uint_ty
2312        .bit_width()
2313        .unwrap_or(config::pointer_width().bits())
2314}
2315
2316fn int_bit_width(int_ty: IntTy) -> u64 {
2317    int_ty.bit_width().unwrap_or(config::pointer_width().bits())
2318}
2319
2320impl ShapeResult {
2321    fn into_bb_envs(
2322        self,
2323        infcx: &mut InferCtxtRoot,
2324        body: &Body,
2325    ) -> FxHashMap<CheckerId, FxHashMap<BasicBlock, BasicBlockEnv>> {
2326        self.0
2327            .into_iter()
2328            .map(|(checker_id, shapes)| {
2329                let bb_envs = shapes
2330                    .into_iter()
2331                    .map(|(bb, shape)| (bb, shape.into_bb_env(infcx, body)))
2332                    .collect();
2333                (checker_id, bb_envs)
2334            })
2335            .collect()
2336    }
2337}
2338
2339fn marker_at_dominator<'a>(
2340    body: &Body,
2341    markers: &'a IndexVec<BasicBlock, Option<Marker>>,
2342    bb: BasicBlock,
2343) -> &'a Marker {
2344    let dominator = body
2345        .dominators()
2346        .immediate_dominator(bb)
2347        .unwrap_or_else(|| tracked_span_bug!());
2348    markers[dominator]
2349        .as_ref()
2350        .unwrap_or_else(|| tracked_span_bug!())
2351}
2352
2353pub(crate) mod errors {
2354    use flux_errors::{E0999, ErrorGuaranteed};
2355    use flux_infer::infer::InferErr;
2356    use flux_middle::{global_env::GlobalEnv, queries::ErrCtxt};
2357    use rustc_errors::Diagnostic;
2358    use rustc_hir::def_id::LocalDefId;
2359    use rustc_span::Span;
2360
2361    use crate::fluent_generated as fluent;
2362
2363    #[derive(Debug)]
2364    pub struct CheckerError {
2365        kind: InferErr,
2366        span: Span,
2367    }
2368
2369    impl CheckerError {
2370        pub fn emit(self, genv: GlobalEnv, fn_def_id: LocalDefId) -> ErrorGuaranteed {
2371            let dcx = genv.sess().dcx().handle();
2372            match self.kind {
2373                InferErr::UnsolvedEvar(_) => {
2374                    let mut diag =
2375                        dcx.struct_span_err(self.span, fluent::refineck_param_inference_error);
2376                    diag.code(E0999);
2377                    diag.emit()
2378                }
2379                InferErr::Query(err) => {
2380                    let level = rustc_errors::Level::Error;
2381                    err.at(ErrCtxt::FnCheck(self.span, fn_def_id))
2382                        .into_diag(dcx, level)
2383                        .emit()
2384                }
2385            }
2386        }
2387    }
2388
2389    pub trait ResultExt<T> {
2390        fn with_span(self, span: Span) -> Result<T, CheckerError>;
2391    }
2392
2393    impl<T, E> ResultExt<T> for Result<T, E>
2394    where
2395        E: Into<InferErr>,
2396    {
2397        fn with_span(self, span: Span) -> Result<T, CheckerError> {
2398            self.map_err(|err| CheckerError { kind: err.into(), span })
2399        }
2400    }
2401}