flux_middle/big_int.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
use std::fmt;
use rustc_macros::{Decodable, Encodable};
/// A signed integer in the range [-2^128, 2^128], represented by a `u128` and an explicit sign.
///
/// In the logic, we work mathematical integers so we could represent them with arbitrary precision
/// integers. We instead take the simpler approach of using a fixed size representation that allows
/// us to store any Rust literal, i.e., we can represent both `i128::MIN` and `u128::MAX`. This works
/// because we never do arithmetic. We can change the representation in the future (and use arbitrary
/// precision integers) if this ever becomes a problem, e.g., if we want to do (precise) arithmetic
/// during constant folding.
#[derive(Clone, Debug, Copy, PartialEq, Eq, Hash, Encodable, Decodable, PartialOrd, Ord)]
pub struct BigInt {
sign: Sign,
val: u128,
}
/// This are in order so negative is less than non-negative.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Encodable, Decodable, PartialOrd, Ord)]
enum Sign {
Negative,
NonNegative,
}
impl BigInt {
pub const ZERO: BigInt = BigInt { sign: Sign::NonNegative, val: 0 };
pub const ONE: BigInt = BigInt { sign: Sign::NonNegative, val: 1 };
pub fn is_negative(&self) -> bool {
matches!(self.sign, Sign::Negative)
}
pub fn abs(&self) -> u128 {
self.val
}
/// Given the bit width of a signed integer type, produces the minimum integer for
/// that type, i.e., -2^(bit_width - 1).
pub fn int_min(bit_width: u32) -> BigInt {
BigInt { sign: Sign::Negative, val: 1u128 << (bit_width - 1) }
}
/// Given the bit width of a signed integer type, produces the maximum integer for
/// that type, i.e., 2^(bit_width - 1) - 1.
pub fn int_max(bit_width: u32) -> BigInt {
(i128::MAX >> (128 - bit_width)).into()
}
/// Given the bit width of an unsigned integer type, produces the maximum
/// unsigned integer for that type, i.e., 2^bit_width - 1.
pub fn uint_max(bit_width: u32) -> BigInt {
(u128::MAX >> (128 - bit_width)).into()
}
}
impl From<usize> for BigInt {
fn from(val: usize) -> Self {
BigInt { sign: Sign::NonNegative, val: val as u128 }
}
}
impl From<u128> for BigInt {
fn from(val: u128) -> Self {
BigInt { sign: Sign::NonNegative, val }
}
}
impl From<i128> for BigInt {
fn from(val: i128) -> Self {
let sign = if val < 0 { Sign::Negative } else { Sign::NonNegative };
BigInt { sign, val: val.unsigned_abs() }
}
}
impl From<i32> for BigInt {
fn from(val: i32) -> Self {
// TODO(nilehmann) use Flux to prove this doesn't overflow
if val < 0 {
BigInt { sign: Sign::Negative, val: -(val as i64) as u128 }
} else {
BigInt { sign: Sign::NonNegative, val: val as u128 }
}
}
}
impl From<u32> for BigInt {
fn from(val: u32) -> Self {
BigInt { sign: Sign::NonNegative, val: val as u128 }
}
}
impl fmt::Display for BigInt {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self.sign {
Sign::NonNegative => write!(f, "{}", self.val),
Sign::Negative => write!(f, "-{}", self.val),
}
}
}