flux_macros/
primops.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
use std::collections::HashMap;

use itertools::Itertools;
use proc_macro2::{Span, TokenStream};
use quote::quote;
use syn::{
    Ident, Lifetime, Token, braced, bracketed, parenthesized,
    parse::{Parse, ParseStream},
    parse_macro_input,
    punctuated::Punctuated,
    token,
};

macro_rules! unwrap_result {
    ($e:expr) => {{
        match $e {
            Ok(e) => e,
            Err(e) => return e.to_compile_error().into(),
        }
    }};
}

pub fn primop_rules(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
    let rules = parse_macro_input!(input as Rules);

    let argc = unwrap_result!(rules.check_arg_count());

    let rules = rules.0.into_iter().enumerate().map(|(i, rule)| {
        Renderer::new(i, rule)
            .render()
            .unwrap_or_else(|err| err.to_compile_error())
    });
    let args = args(argc);
    quote! {
        #[allow(unused_variables, non_snake_case)]
        |#args| {
            #(#rules)*
            None
        }
    }
    .into()
}

fn args(n: usize) -> TokenStream {
    let args = (0..n).map(|i| {
        let bty = mk_bty_arg(i);
        let idx = mk_idx_arg(i);
        quote!((#bty, #idx))
    });
    quote!([#(#args),*])
}

struct Rules(Vec<Rule>);

impl Rules {
    /// Check that the number of arguments is the same in all rules
    fn check_arg_count(&self) -> syn::Result<usize> {
        let argc = self.0.first().map(|rule| rule.args.len()).unwrap_or(0);
        for rule in &self.0 {
            if rule.args.len() != argc {
                return Err(syn::Error::new(
                    Span::call_site(),
                    "all rules must have the same number of arguments",
                ));
            }
        }
        Ok(argc)
    }
}

impl Parse for Rules {
    fn parse(input: ParseStream) -> syn::Result<Self> {
        let mut v = vec![];
        while !input.is_empty() {
            v.push(input.parse()?);
        }
        Ok(Rules(v))
    }
}

struct Renderer {
    lbl: Lifetime,
    rule: Rule,
    /// The set of metavars and the index of the inputs they match
    metavars: HashMap<String, Vec<usize>>,
}

impl Renderer {
    fn new(i: usize, rule: Rule) -> Self {
        let mut metavars: HashMap<String, Vec<usize>> = HashMap::new();
        for (i, input) in rule.args.iter().enumerate() {
            let bty_str = input.bty.to_string();
            if !is_primitive_type(&bty_str) {
                metavars.entry(bty_str).or_default().push(i);
            }
        }

        let lbl = syn::Lifetime::new(&format!("'lbl{}", i), Span::call_site());

        Self { lbl, rule, metavars }
    }

    fn render(&self) -> syn::Result<TokenStream> {
        let lbl = &self.lbl;
        let metavar_matching = self.metavar_matching();
        let primitive_checks = self.check_primitive_types();
        let declare_metavars = self.declare_metavars();
        let guards = self.guards();
        let declare_idxs_names = self.declare_idxs_names();
        let output_type = self.output_type()?;
        let precondition = self.precondition();
        Ok(quote! {
            #lbl: {
                #metavar_matching
                #primitive_checks
                #declare_metavars
                #guards

                #declare_idxs_names
                let precondition = #precondition;
                let v = Expr::nu();
                let output_type = #output_type;
                return Some(MatchedRule { precondition, output_type })
            }
        })
    }

    fn bty_arg_or_prim(&self, ident: &syn::Ident) -> syn::Result<TokenStream> {
        let ident_str = ident.to_string();
        if is_primitive_type(ident) {
            Ok(quote!(BaseTy::from_primitive_str(#ident_str).unwrap()))
        } else {
            self.metavars
                .get(&ident_str)
                .map(|idxs| {
                    let arg = mk_bty_arg(idxs[0]);
                    quote!(#arg.clone())
                })
                .ok_or_else(|| {
                    syn::Error::new(ident.span(), format!("cannot find metavariable `{ident_str}`"))
                })
        }
    }

    fn output_type(&self) -> syn::Result<TokenStream> {
        let out = match &self.rule.output {
            Output::Base(bty) => {
                let bty = self.bty_arg_or_prim(bty)?;
                quote!(#bty.to_ty())
            }
            Output::Indexed(bty, idx) => {
                let bty = self.bty_arg_or_prim(bty)?;
                quote!(rty::Ty::indexed( #bty, #idx))
            }
            Output::Exists(bty, pred) => {
                let bty = self.bty_arg_or_prim(bty)?;
                quote!(rty::Ty::exists_with_constr( #bty, #pred))
            }
        };
        Ok(out)
    }

    /// Generates the code that checks that all the inputs matching the same metavariable are equal
    fn metavar_matching(&self) -> TokenStream {
        let lbl = &self.lbl;
        let checks = self.metavars.values().map(|idxs| {
            let checks = idxs.iter().tuple_windows().map(|(i, j)| {
                let bty_arg1 = mk_bty_arg(*i);
                let bty_arg2 = mk_bty_arg(*j);
                quote! {
                    if #bty_arg2 != #bty_arg1 {
                        break #lbl;
                    }
                }
            });
            quote!(#(#checks)*)
        });
        quote!(#(#checks)*)
    }

    /// Generates the code that checks if an arg matching a primitive type has indeed that type
    fn check_primitive_types(&self) -> TokenStream {
        let lbl = &self.lbl;
        self.rule
            .args
            .iter()
            .enumerate()
            .flat_map(|(i, arg)| {
                let bty = &arg.bty;
                if is_primitive_type(bty) {
                    let bty_str = bty.to_string();
                    let bty_arg = mk_bty_arg(i);
                    Some(quote! {
                        let Some(s) = #bty_arg.primitive_symbol() else {
                            break #lbl;
                        };
                        if s.as_str() != #bty_str {
                            break #lbl;
                        }
                    })
                } else {
                    None
                }
            })
            .collect()
    }

    fn precondition(&self) -> TokenStream {
        if let Some(requires) = &self.rule.requires {
            let reason = &requires.reason;
            let pred = &requires.pred;
            quote!(Some(Pre { reason: #reason, pred: #pred }))
        } else {
            quote!(None)
        }
    }

    /// Declare metavars as variables so they can be accessed in the guards
    fn declare_metavars(&self) -> TokenStream {
        self.metavars
            .iter()
            .map(|(var, matching_positions)| {
                let var = syn::Ident::new(var, Span::call_site());
                let bty_arg = mk_bty_arg(matching_positions[0]);
                quote! {
                    let #var = #bty_arg;
                }
            })
            .collect()
    }

    fn declare_idxs_names(&self) -> TokenStream {
        self.rule
            .args
            .iter()
            .enumerate()
            .map(|(i, arg)| {
                let name = &arg.name;
                let idx_arg = mk_idx_arg(i);
                quote!(let #name = #idx_arg;)
            })
            .collect()
    }

    fn guards(&self) -> TokenStream {
        self.rule
            .guards
            .iter()
            .map(|guard| self.guard(guard))
            .collect()
    }

    fn guard(&self, guard: &Guard) -> TokenStream {
        let lbl = &self.lbl;
        match guard {
            Guard::If(if_, expr) => quote! {#if_ !(#expr) { break #lbl; }},
            Guard::IfLet(let_) => quote!(#let_ else { break #lbl; };),
            Guard::Let(let_) => quote!(#let_;),
        }
    }
}

struct Rule {
    args: Punctuated<Arg, Token![,]>,
    output: Output,
    requires: Option<Requires>,
    guards: Vec<Guard>,
}

impl Parse for Rule {
    fn parse(input: ParseStream) -> syn::Result<Self> {
        let _: Token![fn] = input.parse()?;
        let content;
        parenthesized!(content in input);
        let inputs = content.parse_terminated(Arg::parse, Token![,])?;
        let _: Token![->] = input.parse()?;
        let output = input.parse()?;
        let requires = if input.peek(kw::requires) { Some(input.parse()?) } else { None };
        let guards = parse_guards(input)?;
        Ok(Rule { args: inputs, output, requires, guards })
    }
}

/// An arg of the form `a: T`
struct Arg {
    name: syn::Ident,
    bty: syn::Ident,
}

impl Parse for Arg {
    fn parse(input: ParseStream) -> syn::Result<Self> {
        let name = input.parse()?;
        let _: Token![:] = input.parse()?;
        let bty = input.parse()?;
        Ok(Arg { name, bty })
    }
}

enum Output {
    Base(syn::Ident),
    Indexed(syn::Ident, TokenStream),
    Exists(syn::Ident, TokenStream),
}

impl Parse for Output {
    fn parse(input: ParseStream) -> syn::Result<Self> {
        let bty: syn::Ident = input.parse()?;
        if input.peek(token::Bracket) {
            let content;
            bracketed!(content in input);
            Ok(Output::Indexed(bty, content.parse()?))
        } else if input.peek(token::Brace) {
            let content;
            braced!(content in input);
            let _: syn::Ident = content.parse()?;
            let _: Token![:] = content.parse()?;
            Ok(Output::Exists(bty, content.parse()?))
        } else {
            Ok(Output::Base(bty))
        }
    }
}

struct Requires {
    pred: syn::Expr,
    reason: syn::Path,
}

impl Parse for Requires {
    fn parse(input: ParseStream) -> syn::Result<Self> {
        let _: kw::requires = input.parse()?;
        let pred = input.parse()?;
        let _: Token![=>] = input.parse()?;
        let reason = input.parse()?;
        Ok(Requires { pred, reason })
    }
}

fn parse_guards(input: ParseStream) -> syn::Result<Vec<Guard>> {
    let mut guards = vec![];
    while !input.is_empty() && (input.peek(Token![let]) || input.peek(Token![if])) {
        guards.push(input.parse()?);
    }
    Ok(guards)
}
enum Guard {
    If(Token![if], syn::Expr),
    IfLet(syn::ExprLet),
    Let(syn::ExprLet),
}

impl Parse for Guard {
    fn parse(input: ParseStream) -> syn::Result<Self> {
        let lookahead = input.lookahead1();
        if lookahead.peek(Token![if]) {
            let if_ = input.parse()?;
            if input.peek(Token![let]) {
                Ok(Guard::IfLet(input.parse()?))
            } else {
                Ok(Guard::If(if_, input.parse()?))
            }
        } else if lookahead.peek(Token![let]) {
            Ok(Guard::Let(input.parse()?))
        } else {
            Err(lookahead.error())
        }
    }
}

fn mk_idx_arg(i: usize) -> Ident {
    Ident::new(&format!("idx{}", i), Span::call_site())
}

fn mk_bty_arg(i: usize) -> Ident {
    Ident::new(&format!("bty{}", i), Span::call_site())
}

fn is_primitive_type<T>(s: &T) -> bool
where
    T: PartialEq<str>,
{
    s == "i8"
        || s == "i16"
        || s == "i32"
        || s == "i64"
        || s == "i128"
        || s == "u8"
        || s == "u16"
        || s == "u32"
        || s == "u64"
        || s == "u128"
        || s == "f32"
        || s == "f64"
        || s == "isize"
        || s == "usize"
        || s == "bool"
        || s == "char"
        || s == "str"
}

mod kw {
    syn::custom_keyword!(requires);
}