flux_infer/
infer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
use std::{cell::RefCell, fmt, iter};

use flux_common::{bug, dbg, tracked_span_assert_eq, tracked_span_dbg_assert_eq};
use flux_config::{self as config, InferOpts};
use flux_macros::{TypeFoldable, TypeVisitable};
use flux_middle::{
    def_id::MaybeExternId,
    global_env::GlobalEnv,
    queries::{QueryErr, QueryResult},
    query_bug,
    rty::{
        self, AliasKind, AliasTy, BaseTy, Binder, BoundVariableKinds, CoroutineObligPredicate,
        Ctor, ESpan, EVid, EarlyBinder, Expr, ExprKind, FieldProj, GenericArg, HoleKind, InferMode,
        Lambda, List, Loc, Mutability, Name, Path, PolyVariant, PtrKind, RefineArgs, RefineArgsExt,
        Region, Sort, Ty, TyKind, Var, canonicalize::Hoister, fold::TypeFoldable,
    },
};
use itertools::{Itertools, izip};
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_macros::extension;
use rustc_middle::{
    mir::BasicBlock,
    ty::{TyCtxt, Variance},
};
use rustc_span::Span;

use crate::{
    evars::{EVarState, EVarStore},
    fixpoint_encoding::{FixQueryCache, FixpointCtxt, KVarEncoding, KVarGen},
    projections::NormalizeExt as _,
    refine_tree::{AssumeInvariants, Cursor, Marker, RefineTree, Scope, Unpacker},
};

pub type InferResult<T = ()> = std::result::Result<T, InferErr>;

#[derive(PartialEq, Eq, Clone, Copy, Hash)]
pub struct Tag {
    pub reason: ConstrReason,
    pub src_span: Span,
    pub dst_span: Option<ESpan>,
}

impl Tag {
    pub fn new(reason: ConstrReason, span: Span) -> Self {
        Self { reason, src_span: span, dst_span: None }
    }

    pub fn with_dst(self, dst_span: Option<ESpan>) -> Self {
        Self { dst_span, ..self }
    }
}

#[derive(PartialEq, Eq, Clone, Copy, Hash, Debug)]
pub enum SubtypeReason {
    Input,
    Output,
    Requires,
    Ensures,
}

#[derive(PartialEq, Eq, Clone, Copy, Hash, Debug)]
pub enum ConstrReason {
    Call,
    Assign,
    Ret,
    Fold,
    FoldLocal,
    Assert(&'static str),
    Div,
    Rem,
    Goto(BasicBlock),
    Overflow,
    Subtype(SubtypeReason),
    Other,
}

pub struct InferCtxtRoot<'genv, 'tcx> {
    pub genv: GlobalEnv<'genv, 'tcx>,
    inner: RefCell<InferCtxtInner>,
    refine_tree: RefineTree,
    opts: InferOpts,
}

pub struct InferCtxtRootBuilder<'a, 'genv, 'tcx> {
    genv: GlobalEnv<'genv, 'tcx>,
    opts: InferOpts,
    params: Vec<(Var, Sort)>,
    infcx: &'a rustc_infer::infer::InferCtxt<'tcx>,
    dummy_kvars: bool,
}

#[extension(pub trait GlobalEnvExt<'genv, 'tcx>)]
impl<'genv, 'tcx> GlobalEnv<'genv, 'tcx> {
    fn infcx_root<'a>(
        self,
        infcx: &'a rustc_infer::infer::InferCtxt<'tcx>,
        opts: InferOpts,
    ) -> InferCtxtRootBuilder<'a, 'genv, 'tcx> {
        InferCtxtRootBuilder { genv: self, infcx, params: vec![], opts, dummy_kvars: false }
    }
}

impl<'genv, 'tcx> InferCtxtRootBuilder<'_, 'genv, 'tcx> {
    pub fn with_dummy_kvars(mut self) -> Self {
        self.dummy_kvars = true;
        self
    }

    pub fn with_const_generics(mut self, def_id: DefId) -> QueryResult<Self> {
        self.params.extend(
            self.genv
                .generics_of(def_id)?
                .const_params(self.genv)?
                .into_iter()
                .map(|(pcst, sort)| (Var::ConstGeneric(pcst), sort)),
        );
        Ok(self)
    }

    pub fn with_refinement_generics(
        mut self,
        def_id: DefId,
        args: &[GenericArg],
    ) -> QueryResult<Self> {
        for (index, param) in self
            .genv
            .refinement_generics_of(def_id)?
            .iter_own_params()
            .enumerate()
        {
            let param = param.instantiate(self.genv.tcx(), args, &[]);
            let sort = param.sort.normalize_sorts(def_id, self.genv, self.infcx)?;

            let var =
                Var::EarlyParam(rty::EarlyReftParam { index: index as u32, name: param.name });
            self.params.push((var, sort));
        }
        Ok(self)
    }

    pub fn identity_for_item(mut self, def_id: DefId) -> QueryResult<Self> {
        self = self.with_const_generics(def_id)?;
        let offset = self.params.len();
        self.genv.refinement_generics_of(def_id)?.fill_item(
            self.genv,
            &mut self.params,
            &mut |param, index| {
                let index = (index - offset) as u32;
                let param = param.instantiate_identity();
                let sort = param.sort.normalize_sorts(def_id, self.genv, self.infcx)?;

                let var = Var::EarlyParam(rty::EarlyReftParam { index, name: param.name });
                Ok((var, sort))
            },
        )?;
        Ok(self)
    }

    pub fn build(self) -> QueryResult<InferCtxtRoot<'genv, 'tcx>> {
        Ok(InferCtxtRoot {
            genv: self.genv,
            inner: RefCell::new(InferCtxtInner::new(self.dummy_kvars)),
            refine_tree: RefineTree::new(self.params),
            opts: self.opts,
        })
    }
}

impl<'genv, 'tcx> InferCtxtRoot<'genv, 'tcx> {
    pub fn infcx<'a>(
        &'a mut self,
        def_id: DefId,
        region_infcx: &'a rustc_infer::infer::InferCtxt<'tcx>,
    ) -> InferCtxt<'a, 'genv, 'tcx> {
        InferCtxt {
            genv: self.genv,
            region_infcx,
            def_id,
            cursor: self.refine_tree.cursor_at_root(),
            inner: &self.inner,
            check_overflow: self.opts.check_overflow,
        }
    }

    pub fn fresh_kvar_in_scope(
        &self,
        binders: &[BoundVariableKinds],
        scope: &Scope,
        encoding: KVarEncoding,
    ) -> Expr {
        let inner = &mut *self.inner.borrow_mut();
        inner.kvars.fresh(binders, scope.iter(), encoding)
    }

    pub fn execute_fixpoint_query(
        self,
        cache: &mut FixQueryCache,
        def_id: MaybeExternId,
        ext: &'static str,
    ) -> QueryResult<Vec<Tag>> {
        let inner = self.inner.into_inner();
        let kvars = inner.kvars;
        let evars = inner.evars;

        let mut refine_tree = self.refine_tree;

        refine_tree.replace_evars(&evars).unwrap();

        if config::dump_constraint() {
            dbg::dump_item_info(self.genv.tcx(), def_id.resolved_id(), ext, &refine_tree).unwrap();
        }
        refine_tree.simplify(self.genv);
        if config::dump_constraint() {
            let simp_ext = format!("simp.{}", ext);
            dbg::dump_item_info(self.genv.tcx(), def_id.resolved_id(), simp_ext, &refine_tree)
                .unwrap();
        }

        let mut fcx = FixpointCtxt::new(self.genv, def_id, kvars);
        let cstr = refine_tree.into_fixpoint(&mut fcx)?;

        let backend = match self.opts.solver {
            flux_config::SmtSolver::Z3 => liquid_fixpoint::SmtSolver::Z3,
            flux_config::SmtSolver::CVC5 => liquid_fixpoint::SmtSolver::CVC5,
        };

        fcx.check(cache, cstr, self.opts.scrape_quals, backend)
    }

    pub fn split(self) -> (RefineTree, KVarGen) {
        (self.refine_tree, self.inner.into_inner().kvars)
    }
}

pub struct InferCtxt<'infcx, 'genv, 'tcx> {
    pub genv: GlobalEnv<'genv, 'tcx>,
    pub region_infcx: &'infcx rustc_infer::infer::InferCtxt<'tcx>,
    pub def_id: DefId,
    pub check_overflow: bool,
    cursor: Cursor<'infcx>,
    inner: &'infcx RefCell<InferCtxtInner>,
}

struct InferCtxtInner {
    kvars: KVarGen,
    evars: EVarStore,
}

impl InferCtxtInner {
    fn new(dummy_kvars: bool) -> Self {
        Self { kvars: KVarGen::new(dummy_kvars), evars: Default::default() }
    }
}

impl<'infcx, 'genv, 'tcx> InferCtxt<'infcx, 'genv, 'tcx> {
    pub fn at(&mut self, span: Span) -> InferCtxtAt<'_, 'infcx, 'genv, 'tcx> {
        InferCtxtAt { infcx: self, span }
    }

    pub fn instantiate_refine_args(
        &mut self,
        callee_def_id: DefId,
        args: &[rty::GenericArg],
    ) -> InferResult<List<Expr>> {
        Ok(RefineArgs::for_item(self.genv, callee_def_id, |param, _| {
            let param = param.instantiate(self.genv.tcx(), args, &[]);
            Ok(self.fresh_infer_var(&param.sort, param.mode))
        })?)
    }

    pub fn instantiate_generic_args(&mut self, args: &[GenericArg]) -> Vec<GenericArg> {
        args.iter()
            .map(|a| a.replace_holes(|binders, kind| self.fresh_infer_var_for_hole(binders, kind)))
            .collect_vec()
    }

    pub fn fresh_infer_var(&self, sort: &Sort, mode: InferMode) -> Expr {
        match mode {
            InferMode::KVar => {
                let fsort = sort.expect_func().expect_mono();
                let vars = fsort.inputs().iter().cloned().map_into().collect();
                let kvar = self.fresh_kvar(&[vars], KVarEncoding::Single);
                Expr::abs(Lambda::bind_with_fsort(kvar, fsort))
            }
            InferMode::EVar => self.fresh_evar(),
        }
    }

    pub fn fresh_infer_var_for_hole(
        &mut self,
        binders: &[BoundVariableKinds],
        kind: HoleKind,
    ) -> Expr {
        match kind {
            HoleKind::Pred => self.fresh_kvar(binders, KVarEncoding::Conj),
            HoleKind::Expr(_) => {
                // We only use expression holes to infer early param arguments for opaque types
                // at function calls. These should be well-scoped in the current scope, so we ignore
                // the extra `binders` around the hole.
                self.fresh_evar()
            }
        }
    }

    /// Generate a fresh kvar in the current scope. See [`KVarGen::fresh`].
    pub fn fresh_kvar(&self, binders: &[BoundVariableKinds], encoding: KVarEncoding) -> Expr {
        let inner = &mut *self.inner.borrow_mut();
        inner.kvars.fresh(binders, self.cursor.vars(), encoding)
    }

    fn fresh_evar(&self) -> Expr {
        let evars = &mut self.inner.borrow_mut().evars;
        Expr::evar(evars.fresh(self.cursor.marker()))
    }

    pub fn unify_exprs(&self, a: &Expr, b: &Expr) {
        if a.has_evars() {
            return;
        }
        let evars = &mut self.inner.borrow_mut().evars;
        if let ExprKind::Var(Var::EVar(evid)) = b.kind()
            && let EVarState::Unsolved(marker) = evars.get(*evid)
            && !marker.has_free_vars(a)
        {
            evars.solve(*evid, a.clone());
        }
    }

    fn enter_exists<T, U>(
        &mut self,
        t: &Binder<T>,
        f: impl FnOnce(&mut InferCtxt<'_, 'genv, 'tcx>, T) -> U,
    ) -> U
    where
        T: TypeFoldable,
    {
        self.ensure_resolved_evars(|infcx| {
            let t = t.replace_bound_refts_with(|sort, mode, _| infcx.fresh_infer_var(sort, mode));
            Ok(f(infcx, t))
        })
        .unwrap()
    }

    /// Used in conjunction with [`InferCtxt::pop_evar_scope`] to ensure evars are solved at the end
    /// of some scope, for example, to ensure all evars generated during a function call are solved
    /// after checking argument subtyping. These functions can be used in a stack-like fashion to
    /// create nested scopes.
    pub fn push_evar_scope(&mut self) {
        self.inner.borrow_mut().evars.push_scope();
    }

    /// Pop a scope and check all evars have been solved. This only check evars generated from the
    /// last call to [`InferCtxt::push_evar_scope`].
    pub fn pop_evar_scope(&mut self) -> InferResult {
        self.inner
            .borrow_mut()
            .evars
            .pop_scope()
            .map_err(InferErr::UnsolvedEvar)
    }

    /// Convenience method pairing [`InferCtxt::push_evar_scope`] and [`InferCtxt::pop_evar_scope`].
    pub fn ensure_resolved_evars<R>(
        &mut self,
        f: impl FnOnce(&mut Self) -> InferResult<R>,
    ) -> InferResult<R> {
        self.push_evar_scope();
        let r = f(self)?;
        self.pop_evar_scope()?;
        Ok(r)
    }

    pub fn fully_resolve_evars<T: TypeFoldable>(&self, t: &T) -> T {
        self.inner.borrow().evars.replace_evars(t).unwrap()
    }

    pub fn tcx(&self) -> TyCtxt<'tcx> {
        self.genv.tcx()
    }

    pub fn cursor(&self) -> &Cursor<'infcx> {
        &self.cursor
    }
}

/// Methods that interact with the underlying [`Cursor`]
impl<'infcx, 'genv, 'tcx> InferCtxt<'infcx, 'genv, 'tcx> {
    pub fn change_item<'a>(
        &'a mut self,
        def_id: LocalDefId,
        region_infcx: &'a rustc_infer::infer::InferCtxt<'tcx>,
    ) -> InferCtxt<'a, 'genv, 'tcx> {
        InferCtxt {
            def_id: def_id.to_def_id(),
            cursor: self.cursor.branch(),
            region_infcx,
            ..*self
        }
    }

    pub fn move_to(&mut self, marker: &Marker, clear_children: bool) -> InferCtxt<'_, 'genv, 'tcx> {
        InferCtxt { cursor: self.cursor.move_to(marker, clear_children).unwrap(), ..*self }
    }

    pub fn branch(&mut self) -> InferCtxt<'_, 'genv, 'tcx> {
        InferCtxt { cursor: self.cursor.branch(), ..*self }
    }

    pub fn define_var(&mut self, sort: &Sort) -> Name {
        self.cursor.define_var(sort)
    }

    pub fn check_pred(&mut self, pred: impl Into<Expr>, tag: Tag) {
        self.cursor.check_pred(pred, tag);
    }

    pub fn assume_pred(&mut self, pred: impl Into<Expr>) {
        self.cursor.assume_pred(pred);
    }

    pub fn unpack(&mut self, ty: &Ty) -> Ty {
        self.hoister(false).hoist(ty)
    }

    pub fn marker(&self) -> Marker {
        self.cursor.marker()
    }

    pub fn hoister(&mut self, assume_invariants: bool) -> Hoister<Unpacker<'_, 'infcx>> {
        self.cursor.hoister(if assume_invariants {
            AssumeInvariants::yes(self.check_overflow)
        } else {
            AssumeInvariants::No
        })
    }

    pub fn assume_invariants(&mut self, ty: &Ty) {
        self.cursor.assume_invariants(ty, self.check_overflow);
    }

    fn check_impl(&mut self, pred1: impl Into<Expr>, pred2: impl Into<Expr>, tag: Tag) {
        self.cursor.check_impl(pred1, pred2, tag);
    }
}

impl std::fmt::Debug for InferCtxt<'_, '_, '_> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        std::fmt::Debug::fmt(&self.cursor, f)
    }
}

#[derive(Debug)]
pub struct InferCtxtAt<'a, 'infcx, 'genv, 'tcx> {
    pub infcx: &'a mut InferCtxt<'infcx, 'genv, 'tcx>,
    pub span: Span,
}

impl<'genv, 'tcx> InferCtxtAt<'_, '_, 'genv, 'tcx> {
    fn tag(&self, reason: ConstrReason) -> Tag {
        Tag::new(reason, self.span)
    }

    pub fn check_pred(&mut self, pred: impl Into<Expr>, reason: ConstrReason) {
        let tag = self.tag(reason);
        self.infcx.check_pred(pred, tag);
    }

    pub fn check_non_closure_clauses(
        &mut self,
        clauses: &[rty::Clause],
        reason: ConstrReason,
    ) -> InferResult {
        for clause in clauses {
            if let rty::ClauseKind::Projection(projection_pred) = clause.kind_skipping_binder() {
                let impl_elem = BaseTy::projection(projection_pred.projection_ty)
                    .to_ty()
                    .normalize_projections(self.infcx)?;
                let term = projection_pred
                    .term
                    .to_ty()
                    .normalize_projections(self.infcx)?;

                // TODO: does this really need to be invariant? https://github.com/flux-rs/flux/pull/478#issuecomment-1654035374
                self.subtyping(&impl_elem, &term, reason)?;
                self.subtyping(&term, &impl_elem, reason)?;
            }
        }
        Ok(())
    }

    /// Relate types via subtyping. This is the same as [`InferCtxtAt::subtyping`] except that we
    /// also require a [`LocEnv`] to handle pointers and strong references
    pub fn subtyping_with_env(
        &mut self,
        env: &mut impl LocEnv,
        a: &Ty,
        b: &Ty,
        reason: ConstrReason,
    ) -> InferResult {
        let mut sub = Sub::new(env, reason, self.span);
        sub.tys(self.infcx, a, b)
    }

    /// Relate types via subtyping and returns coroutine obligations. This doesn't handle subtyping
    /// when strong references are involved.
    ///
    /// See comment for [`Sub::obligations`].
    pub fn subtyping(
        &mut self,
        a: &Ty,
        b: &Ty,
        reason: ConstrReason,
    ) -> InferResult<Vec<Binder<rty::CoroutineObligPredicate>>> {
        let mut env = DummyEnv;
        let mut sub = Sub::new(&mut env, reason, self.span);
        sub.tys(self.infcx, a, b)?;
        Ok(sub.obligations)
    }

    // FIXME(nilehmann) this is similar to `Checker::check_call`, but since is used from
    // `place_ty::fold` we cannot use that directly. We should try to unify them, because
    // there are a couple of things missing here (e.g., checking clauses on the struct definition).
    pub fn check_constructor(
        &mut self,
        variant: EarlyBinder<PolyVariant>,
        generic_args: &[GenericArg],
        fields: &[Ty],
        reason: ConstrReason,
    ) -> InferResult<Ty> {
        let ret = self.ensure_resolved_evars(|this| {
            // Replace holes in generic arguments with fresh inference variables
            let generic_args = this.instantiate_generic_args(generic_args);

            let variant = variant
                .instantiate(this.tcx(), &generic_args, &[])
                .replace_bound_refts_with(|sort, mode, _| this.fresh_infer_var(sort, mode));

            // Check arguments
            for (actual, formal) in iter::zip(fields, variant.fields()) {
                this.subtyping(actual, formal, reason)?;
            }

            // Check requires predicates
            for require in &variant.requires {
                this.check_pred(require, ConstrReason::Fold);
            }

            Ok(variant.ret())
        })?;
        Ok(self.fully_resolve_evars(&ret))
    }

    pub fn ensure_resolved_evars<R>(
        &mut self,
        f: impl FnOnce(&mut InferCtxtAt<'_, '_, 'genv, 'tcx>) -> InferResult<R>,
    ) -> InferResult<R> {
        self.infcx
            .ensure_resolved_evars(|infcx| f(&mut infcx.at(self.span)))
    }
}

impl<'a, 'genv, 'tcx> std::ops::Deref for InferCtxtAt<'_, 'a, 'genv, 'tcx> {
    type Target = InferCtxt<'a, 'genv, 'tcx>;

    fn deref(&self) -> &Self::Target {
        self.infcx
    }
}

impl std::ops::DerefMut for InferCtxtAt<'_, '_, '_, '_> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.infcx
    }
}

/// Used for debugging to attach a "trace" to the [`RefineTree`] that can be used to print information
/// to recover the derivation when relating types via subtyping. The code that attaches the trace is
/// currently commented out because the output is too verbose.
#[derive(TypeVisitable, TypeFoldable)]
pub(crate) enum TypeTrace {
    Types(Ty, Ty),
    BaseTys(BaseTy, BaseTy),
}

#[expect(dead_code, reason = "we use this for debugging some time")]
impl TypeTrace {
    fn tys(a: &Ty, b: &Ty) -> Self {
        Self::Types(a.clone(), b.clone())
    }

    fn btys(a: &BaseTy, b: &BaseTy) -> Self {
        Self::BaseTys(a.clone(), b.clone())
    }
}

impl fmt::Debug for TypeTrace {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            TypeTrace::Types(a, b) => write!(f, "{a:?} - {b:?}"),
            TypeTrace::BaseTys(a, b) => write!(f, "{a:?} - {b:?}"),
        }
    }
}

pub trait LocEnv {
    fn ptr_to_ref(
        &mut self,
        infcx: &mut InferCtxtAt,
        reason: ConstrReason,
        re: Region,
        path: &Path,
        bound: Ty,
    ) -> InferResult<Ty>;

    fn unfold_strg_ref(&mut self, infcx: &mut InferCtxt, path: &Path, ty: &Ty) -> InferResult<Loc>;

    fn get(&self, path: &Path) -> Ty;
}

struct DummyEnv;

impl LocEnv for DummyEnv {
    fn ptr_to_ref(
        &mut self,
        _: &mut InferCtxtAt,
        _: ConstrReason,
        _: Region,
        _: &Path,
        _: Ty,
    ) -> InferResult<Ty> {
        bug!("call to `ptr_to_ref` on `DummyEnv`")
    }

    fn unfold_strg_ref(&mut self, _: &mut InferCtxt, _: &Path, _: &Ty) -> InferResult<Loc> {
        bug!("call to `unfold_str_ref` on `DummyEnv`")
    }

    fn get(&self, _: &Path) -> Ty {
        bug!("call to `get` on `DummyEnv`")
    }
}

/// Context used to relate two types `a` and `b` via subtyping
struct Sub<'a, E> {
    /// The environment to lookup locations pointed to by [`TyKind::Ptr`].
    env: &'a mut E,
    reason: ConstrReason,
    span: Span,
    /// FIXME(nilehmann) This is used to store coroutine obligations generated during subtyping when
    /// relating an opaque type. Other obligations related to relating opaque types are resolved
    /// directly here. The implementation is really messy and we may be missing some obligations.
    obligations: Vec<Binder<rty::CoroutineObligPredicate>>,
}

impl<'a, E: LocEnv> Sub<'a, E> {
    fn new(env: &'a mut E, reason: ConstrReason, span: Span) -> Self {
        Self { env, reason, span, obligations: vec![] }
    }

    fn tag(&self) -> Tag {
        Tag::new(self.reason, self.span)
    }

    fn tys(&mut self, infcx: &mut InferCtxt, a: &Ty, b: &Ty) -> InferResult {
        let infcx = &mut infcx.branch();

        // infcx.push_trace(TypeTrace::tys(a, b));

        // We *fully* unpack the lhs before continuing to be able to prove goals like this
        // ∃a. (i32[a], ∃b. {i32[b] | a > b})} <: ∃a,b. ({i32[a] | b < a}, i32[b])
        // See S4.5 in https://arxiv.org/pdf/2209.13000v1.pdf
        let a = infcx.unpack(a);

        match (a.kind(), b.kind()) {
            (TyKind::Exists(..), _) => {
                bug!("existentials should have been removed by the unpacking above");
            }
            (TyKind::Constr(..), _) => {
                bug!("constraint types should have been removed by the unpacking above");
            }

            (_, TyKind::Exists(ctor_b)) => {
                infcx.enter_exists(ctor_b, |infcx, ty_b| self.tys(infcx, &a, &ty_b))
            }
            (_, TyKind::Constr(pred_b, ty_b)) => {
                infcx.check_pred(pred_b, self.tag());
                self.tys(infcx, &a, ty_b)
            }

            (TyKind::Ptr(PtrKind::Mut(_), path_a), TyKind::StrgRef(_, path_b, ty_b)) => {
                // We should technically remove `path1` from `env`, but we are assuming that functions
                // always give back ownership of the location so `path1` is going to be overwritten
                // after the call anyways.
                let ty_a = self.env.get(path_a);
                infcx.unify_exprs(&path_a.to_expr(), &path_b.to_expr());
                self.tys(infcx, &ty_a, ty_b)
            }
            (TyKind::StrgRef(_, path_a, ty_a), TyKind::StrgRef(_, path_b, ty_b)) => {
                // We have to unfold strong references prior to a subtyping check. Normally, when
                // checking a function body, a `StrgRef` is automatically unfolded i.e. `x:&strg T`
                // is turned into a `x:ptr(l); l: T` where `l` is some fresh location. However, we
                // need the below to do a similar unfolding during function subtyping where we just
                // have the super-type signature that needs to be unfolded. We also add the binding
                // to the environment so that we can:
                // (1) UPDATE the location after the call, and
                // (2) CHECK the relevant `ensures` clauses of the super-sig.
                // Same as the `Ptr` case above we should remove the location from the environment
                // after unfolding to consume it, but we are assuming functions always give back
                // ownership.
                self.env.unfold_strg_ref(infcx, path_a, ty_a)?;
                let ty_a = self.env.get(path_a);
                infcx.unify_exprs(&path_a.to_expr(), &path_b.to_expr());
                self.tys(infcx, &ty_a, ty_b)
            }
            (
                TyKind::Ptr(PtrKind::Mut(re), path),
                TyKind::Indexed(BaseTy::Ref(_, bound, Mutability::Mut), idx),
            ) => {
                // We sometimes generate evars for the index of references so we need to make sure
                // we solve them.
                self.idxs_eq(infcx, &Expr::unit(), idx);

                self.env.ptr_to_ref(
                    &mut infcx.at(self.span),
                    self.reason,
                    *re,
                    path,
                    bound.clone(),
                )?;
                Ok(())
            }

            (TyKind::Indexed(bty_a, idx_a), TyKind::Indexed(bty_b, idx_b)) => {
                self.btys(infcx, bty_a, bty_b)?;
                self.idxs_eq(infcx, idx_a, idx_b);
                Ok(())
            }
            (TyKind::Ptr(pk_a, path_a), TyKind::Ptr(pk_b, path_b)) => {
                debug_assert_eq!(pk_a, pk_b);
                debug_assert_eq!(path_a, path_b);
                Ok(())
            }
            (TyKind::Param(param_ty_a), TyKind::Param(param_ty_b)) => {
                debug_assert_eq!(param_ty_a, param_ty_b);
                Ok(())
            }
            (_, TyKind::Uninit) => Ok(()),
            (TyKind::Downcast(.., fields_a), TyKind::Downcast(.., fields_b)) => {
                debug_assert_eq!(fields_a.len(), fields_b.len());
                for (ty_a, ty_b) in iter::zip(fields_a, fields_b) {
                    self.tys(infcx, ty_a, ty_b)?;
                }
                Ok(())
            }
            _ => Err(query_bug!("incompatible types: `{a:?}` - `{b:?}`"))?,
        }
    }

    fn btys(&mut self, infcx: &mut InferCtxt, a: &BaseTy, b: &BaseTy) -> InferResult {
        // infcx.push_trace(TypeTrace::btys(a, b));

        match (a, b) {
            (BaseTy::Int(int_ty_a), BaseTy::Int(int_ty_b)) => {
                debug_assert_eq!(int_ty_a, int_ty_b);
                Ok(())
            }
            (BaseTy::Uint(uint_ty_a), BaseTy::Uint(uint_ty_b)) => {
                debug_assert_eq!(uint_ty_a, uint_ty_b);
                Ok(())
            }
            (BaseTy::Adt(a_adt, a_args), BaseTy::Adt(b_adt, b_args)) => {
                tracked_span_dbg_assert_eq!(a_adt.did(), b_adt.did());
                tracked_span_dbg_assert_eq!(a_args.len(), b_args.len());
                let variances = infcx.genv.variances_of(a_adt.did());
                for (variance, ty_a, ty_b) in izip!(variances, a_args.iter(), b_args.iter()) {
                    self.generic_args(infcx, *variance, ty_a, ty_b)?;
                }
                Ok(())
            }
            (BaseTy::FnDef(a_def_id, a_args), BaseTy::FnDef(b_def_id, b_args)) => {
                debug_assert_eq!(a_def_id, b_def_id);
                debug_assert_eq!(a_args.len(), b_args.len());
                // NOTE: we don't check subtyping here because the RHS is *really*
                // the function type, the LHS is just generated by rustc.
                // we could generate a subtyping constraint but those would
                // just be trivial (but might cause useless cycles in fixpoint).
                // Nico: (This is probably ok because) We never do function
                // subtyping between `FnDef` *except* when (the def_id) is
                // passed as an argument to a function.
                for (arg_a, arg_b) in iter::zip(a_args, b_args) {
                    match (arg_a, arg_b) {
                        (GenericArg::Ty(ty_a), GenericArg::Ty(ty_b)) => {
                            let bty_a = ty_a.as_bty_skipping_existentials();
                            let bty_b = ty_b.as_bty_skipping_existentials();
                            tracked_span_dbg_assert_eq!(bty_a, bty_b);
                        }
                        (GenericArg::Base(ctor_a), GenericArg::Base(ctor_b)) => {
                            let bty_a = ctor_a.as_bty_skipping_binder();
                            let bty_b = ctor_b.as_bty_skipping_binder();
                            tracked_span_dbg_assert_eq!(bty_a, bty_b);
                        }
                        (_, _) => tracked_span_dbg_assert_eq!(arg_a, arg_b),
                    }
                }
                Ok(())
            }
            (BaseTy::Float(float_ty_a), BaseTy::Float(float_ty_b)) => {
                debug_assert_eq!(float_ty_a, float_ty_b);
                Ok(())
            }
            (BaseTy::Slice(ty_a), BaseTy::Slice(ty_b)) => self.tys(infcx, ty_a, ty_b),
            (BaseTy::Ref(_, ty_a, Mutability::Mut), BaseTy::Ref(_, ty_b, Mutability::Mut)) => {
                self.tys(infcx, ty_a, ty_b)?;
                self.tys(infcx, ty_b, ty_a)
            }
            (BaseTy::Ref(_, ty_a, Mutability::Not), BaseTy::Ref(_, ty_b, Mutability::Not)) => {
                self.tys(infcx, ty_a, ty_b)
            }
            (BaseTy::Tuple(tys_a), BaseTy::Tuple(tys_b)) => {
                debug_assert_eq!(tys_a.len(), tys_b.len());
                for (ty_a, ty_b) in iter::zip(tys_a, tys_b) {
                    self.tys(infcx, ty_a, ty_b)?;
                }
                Ok(())
            }
            (_, BaseTy::Alias(AliasKind::Opaque, alias_ty_b)) => {
                if let BaseTy::Alias(AliasKind::Opaque, alias_ty_a) = a {
                    debug_assert_eq!(alias_ty_a.refine_args.len(), alias_ty_b.refine_args.len());
                    iter::zip(alias_ty_a.refine_args.iter(), alias_ty_b.refine_args.iter())
                        .for_each(|(expr_a, expr_b)| infcx.unify_exprs(expr_a, expr_b));
                }
                self.handle_opaque_type(infcx, a, alias_ty_b)
            }
            (
                BaseTy::Alias(AliasKind::Projection, alias_ty_a),
                BaseTy::Alias(AliasKind::Projection, alias_ty_b),
            ) => {
                debug_assert_eq!(alias_ty_a, alias_ty_b);
                Ok(())
            }
            (BaseTy::Array(ty_a, len_a), BaseTy::Array(ty_b, len_b)) => {
                debug_assert_eq!(len_a, len_b);
                self.tys(infcx, ty_a, ty_b)
            }
            (BaseTy::Param(param_a), BaseTy::Param(param_b)) => {
                debug_assert_eq!(param_a, param_b);
                Ok(())
            }
            (BaseTy::Bool, BaseTy::Bool)
            | (BaseTy::Str, BaseTy::Str)
            | (BaseTy::Char, BaseTy::Char)
            | (BaseTy::RawPtr(_, _), BaseTy::RawPtr(_, _)) => Ok(()),
            (BaseTy::Dynamic(preds_a, _), BaseTy::Dynamic(preds_b, _)) => {
                tracked_span_assert_eq!(preds_a.erase_regions(), preds_b.erase_regions());
                Ok(())
            }
            (BaseTy::Closure(did1, tys_a, _), BaseTy::Closure(did2, tys_b, _)) if did1 == did2 => {
                debug_assert_eq!(tys_a.len(), tys_b.len());
                for (ty_a, ty_b) in iter::zip(tys_a, tys_b) {
                    self.tys(infcx, ty_a, ty_b)?;
                }
                Ok(())
            }
            (BaseTy::FnPtr(sig_a), BaseTy::FnPtr(sig_b)) => {
                tracked_span_assert_eq!(sig_a, sig_b);
                Ok(())
            }
            _ => Err(query_bug!("incompatible base types: `{a:?}` - `{b:?}`"))?,
        }
    }

    fn generic_args(
        &mut self,
        infcx: &mut InferCtxt,
        variance: Variance,
        a: &GenericArg,
        b: &GenericArg,
    ) -> InferResult {
        let (ty_a, ty_b) = match (a, b) {
            (GenericArg::Ty(ty_a), GenericArg::Ty(ty_b)) => (ty_a.clone(), ty_b.clone()),
            (GenericArg::Base(ctor_a), GenericArg::Base(ctor_b)) => {
                debug_assert_eq!(ctor_a.sort(), ctor_b.sort());
                (ctor_a.to_ty(), ctor_b.to_ty())
            }
            (GenericArg::Lifetime(_), GenericArg::Lifetime(_)) => return Ok(()),
            (GenericArg::Const(cst_a), GenericArg::Const(cst_b)) => {
                debug_assert_eq!(cst_a, cst_b);
                return Ok(());
            }
            _ => Err(query_bug!("incompatible generic args: `{a:?}` `{b:?}`"))?,
        };
        match variance {
            Variance::Covariant => self.tys(infcx, &ty_a, &ty_b),
            Variance::Invariant => {
                self.tys(infcx, &ty_a, &ty_b)?;
                self.tys(infcx, &ty_b, &ty_a)
            }
            Variance::Contravariant => self.tys(infcx, &ty_b, &ty_a),
            Variance::Bivariant => Ok(()),
        }
    }

    fn idxs_eq(&mut self, infcx: &mut InferCtxt, a: &Expr, b: &Expr) {
        if a == b {
            return;
        }
        match (a.kind(), b.kind()) {
            (
                ExprKind::Ctor(Ctor::Struct(did_a), flds_a),
                ExprKind::Ctor(Ctor::Struct(did_b), flds_b),
            ) => {
                debug_assert_eq!(did_a, did_b);
                for (a, b) in iter::zip(flds_a, flds_b) {
                    self.idxs_eq(infcx, a, b);
                }
            }
            (ExprKind::Tuple(flds_a), ExprKind::Tuple(flds_b)) => {
                for (a, b) in iter::zip(flds_a, flds_b) {
                    self.idxs_eq(infcx, a, b);
                }
            }
            (_, ExprKind::Tuple(flds_b)) => {
                for (f, b) in flds_b.iter().enumerate() {
                    let proj = FieldProj::Tuple { arity: flds_b.len(), field: f as u32 };
                    let a = a.proj_and_reduce(proj);
                    self.idxs_eq(infcx, &a, b);
                }
            }

            (_, ExprKind::Ctor(Ctor::Struct(def_id), flds_b)) => {
                for (f, b) in flds_b.iter().enumerate() {
                    let proj = FieldProj::Adt { def_id: *def_id, field: f as u32 };
                    let a = a.proj_and_reduce(proj);
                    self.idxs_eq(infcx, &a, b);
                }
            }

            (ExprKind::Tuple(flds_a), _) => {
                infcx.unify_exprs(a, b);
                for (f, a) in flds_a.iter().enumerate() {
                    let proj = FieldProj::Tuple { arity: flds_a.len(), field: f as u32 };
                    let b = b.proj_and_reduce(proj);
                    self.idxs_eq(infcx, a, &b);
                }
            }
            (ExprKind::Ctor(Ctor::Struct(def_id), flds_a), _) => {
                infcx.unify_exprs(a, b);
                for (f, a) in flds_a.iter().enumerate() {
                    let proj = FieldProj::Adt { def_id: *def_id, field: f as u32 };
                    let b = b.proj_and_reduce(proj);
                    self.idxs_eq(infcx, a, &b);
                }
            }
            (ExprKind::Abs(lam_a), ExprKind::Abs(lam_b)) => {
                self.abs_eq(infcx, lam_a, lam_b);
            }
            (_, ExprKind::Abs(lam_b)) => {
                self.abs_eq(infcx, &a.eta_expand_abs(lam_b.vars(), lam_b.output()), lam_b);
            }
            (ExprKind::Abs(lam_a), _) => {
                infcx.unify_exprs(a, b);
                self.abs_eq(infcx, lam_a, &b.eta_expand_abs(lam_a.vars(), lam_a.output()));
            }
            (ExprKind::KVar(_), _) | (_, ExprKind::KVar(_)) => {
                infcx.check_impl(a, b, self.tag());
                infcx.check_impl(b, a, self.tag());
            }
            _ => {
                infcx.unify_exprs(a, b);
                let span = b.span();
                infcx.check_pred(Expr::binary_op(rty::BinOp::Eq, a, b).at_opt(span), self.tag());
            }
        }
    }

    fn abs_eq(&mut self, infcx: &mut InferCtxt, a: &Lambda, b: &Lambda) {
        debug_assert_eq!(a.vars().len(), b.vars().len());
        let vars = a
            .vars()
            .iter()
            .map(|kind| Expr::fvar(infcx.define_var(kind.expect_sort())))
            .collect_vec();
        let body_a = a.apply(&vars);
        let body_b = b.apply(&vars);
        self.idxs_eq(infcx, &body_a, &body_b);
    }

    fn handle_opaque_type(
        &mut self,
        infcx: &mut InferCtxt,
        bty: &BaseTy,
        alias_ty: &AliasTy,
    ) -> InferResult {
        if let BaseTy::Coroutine(def_id, resume_ty, upvar_tys) = bty {
            let obligs = mk_coroutine_obligations(
                infcx.genv,
                def_id,
                resume_ty,
                upvar_tys,
                &alias_ty.def_id,
            )?;
            self.obligations.extend(obligs);
        } else {
            let bounds = infcx.genv.item_bounds(alias_ty.def_id)?.instantiate(
                infcx.tcx(),
                &alias_ty.args,
                &alias_ty.refine_args,
            );
            for clause in &bounds {
                if let rty::ClauseKind::Projection(pred) = clause.kind_skipping_binder() {
                    let alias_ty = pred.projection_ty.with_self_ty(bty.to_subset_ty_ctor());
                    let ty1 = BaseTy::Alias(AliasKind::Projection, alias_ty)
                        .to_ty()
                        .normalize_projections(infcx)?;
                    let ty2 = pred.term.to_ty();
                    self.tys(infcx, &ty1, &ty2)?;
                }
            }
        }
        Ok(())
    }
}

fn mk_coroutine_obligations(
    genv: GlobalEnv,
    generator_did: &DefId,
    resume_ty: &Ty,
    upvar_tys: &List<Ty>,
    opaque_def_id: &DefId,
) -> InferResult<Vec<Binder<rty::CoroutineObligPredicate>>> {
    let bounds = genv.item_bounds(*opaque_def_id)?.skip_binder();
    for bound in &bounds {
        if let Some(proj_clause) = bound.as_projection_clause() {
            return Ok(vec![proj_clause.map(|proj_clause| {
                let output = proj_clause.term;
                CoroutineObligPredicate {
                    def_id: *generator_did,
                    resume_ty: resume_ty.clone(),
                    upvar_tys: upvar_tys.clone(),
                    output: output.to_ty(),
                }
            })]);
        }
    }
    bug!("no projection predicate")
}

#[derive(Debug)]
pub enum InferErr {
    UnsolvedEvar(EVid),
    OpaqueStruct(DefId),
    Query(QueryErr),
}

impl From<QueryErr> for InferErr {
    fn from(v: QueryErr) -> Self {
        Self::Query(v)
    }
}

mod pretty {
    use std::fmt;

    use flux_middle::pretty::*;

    use super::*;

    impl Pretty for Tag {
        fn fmt(&self, cx: &PrettyCx, f: &mut fmt::Formatter<'_>) -> fmt::Result {
            w!(cx, f, "{:?} at {:?}", ^self.reason, self.src_span)
        }
    }

    impl_debug_with_default_cx!(Tag);
}